3.5 KiB
Reachability and Observability
Reachability
While in the non linear world, we can solve a system
numerically, through an iterative-approach:
\begin{align*}
\dot{x}(t) &= f(x(t), u(t)) && t \in \R \\
x(k+1) &= f(x(k), u(k)) && t \in \N
\end{align*}
In the linear world, we can do this analitically:
Tip
We usually consider
x(0) = 0
\begin{align*}
x(1) &= Ax(0) + Bu(0) \\
x(2) &= Ax(1) + Bu(1) &&= A^{2}x(0) + ABu(0) + Bu(1) \\
x(3) &= Ax(2) + Bu(2) &&= A^{3}x(0) + A^{2}Bu(0) + ABu(1) + Bu(2) \\
\dots \\
x(k) &= Ax(k-1) + Bu(k-1) &&=
\underbrace{A^{k}x(0)}_\text{Free Dynamic} +
\underbrace{A^{k-1}Bu(0) + \dots + ABu(k-2) + Bu(k-1) }
_\text{Forced Dynamic} \\[40pts]
x(k) &= \begin{bmatrix}
B & AB & \dots & A^{k-2}B & A^{k-1}B
\end{bmatrix}
\begin{bmatrix}
u(k-1) \\ u(k-2) \\ \dots \\ u(1) \\ u(0)
\end{bmatrix}
\end{align*}
Now, there's a relation between the determinant and the matrix containing
A and B:
\begin{align*}
&p_c(s) = det(sI -A) =
s^n + a_{n-1} s^{n-1} + a_{n-2}s^{n - 2} + \dots + a_1s + a_0 = 0
\\[10pt]
&\text{Apply Caley-Hamilton theorem:} \\
&p_c(A) = A^{n} + a_{n-1}A^{n_1} + \dots + a_1A + a_0 = 0\\[10pt]
&\text{Remember $G(s)$ formula and multiply $p_c(A)$ for $B$:} \\
&p_c(A)B = A^{n}B + a_{n-1}A^{n_1}B + \dots + a_1AB + a_0B = 0 \rightarrow \\
&p_c(A)B = a_{n-1}A^{n_1}B + \dots + a_1AB + a_0B = -A^{n}B
\end{align*}
All of these makes us conclude something about the Kallman Controllability Matrix:
K_c = \begin{bmatrix}
B & AB & \dots & A^{k-2}B & A^{k-1}B
\end{bmatrix}
Moreover, x(n) \in range(K_c) and range(K_c) is said
reachable space.
In particular if rank(K_c) = n \rightarrow range(K_c) = \R^{n} this
is fully reachable or controllable
Tip
Some others use
non-singularityinstead of therange()definition
Note
On the Franklin Powell there's another definition to
K_cthat comes from the fact that we needed to find a way to transform anyrealizationinto theControl Canonical Form
Observability
This is the capability of being able to deduce the initial state by just
observing the output.
Let's focus on the y(t) part:
y(t) =
\underbrace{Cx(t)}_\text{Free Output} +
\underbrace{Du(t)}_\text{Forced Output}
Assume that u(t) = 0:
\begin{align*}
& y(0) = Cx(0) && x(0) = x(0) \\
& y(1) = Cx(1) && x(1) = Ax(0) &&
\text{Since $u(t) = 0 \rightarrow Bu(t) = 0$} \\
& y(2) = Cx(2) && x(2) = A^2x(0) \\
& \vdots && \vdots \\
&y(n) = Cx(n) && x(n) = A^nx(0) \rightarrow \\
\rightarrow &y(n) = CA^nx(0)
\end{align*}
Now we have that:
\begin{align*}
\vec{y} = &\begin{bmatrix}
C \\
CA \\
\vdots \\
CA^{n}
\end{bmatrix} x(0) \rightarrow \\
\rightarrow x(0) = &\begin{bmatrix}
C \\
CA \\
\vdots \\
CA^{n}
\end{bmatrix}^{-1}\vec{y} \rightarrow \\
\rightarrow x(0) = & \frac{Adj(K_o)}{det(K_o)} \vec{y}
\end{align*}
For the same reasons as before, we can use Caley-Hamilton here too, also, we can see that if K_o is singular, there can't be an inverse.
As before, K_o is such a matrix that allows us to see if there exists a
Canonical Observable Form
The non-observable-space is equal to:
X_{no} = Kern(K_o) : \left\{ K_ox = 0 | x \in X\right\}
Decomposition of these spaces
The space of possible points is X and is equal to
X = X_r \bigoplus X_{r}^{\perp} = X_r \bigoplus X_{nr}
Analogously we can do the same with the observable spaces
X = X_no \bigoplus X_{no}^{\perp} = X_no \bigoplus X_{o}