Added ch 14
This commit is contained in:
parent
82f8d8e906
commit
f5bc43c59b
@ -122,6 +122,8 @@ Take all node embeddings that are in the neighbouroud and do similar steps as th
|
||||
|
||||
## Polynomial Filters
|
||||
|
||||
Each polynomial filter is order invariant
|
||||
|
||||
### Graph Laplacian
|
||||
|
||||
Let's set an order over nodes of a graph, where $A$ is the adjacency matrix:
|
||||
@ -195,4 +197,97 @@ $$
|
||||
> So this shows that the degree of the polynomial decides the max number of hops
|
||||
> to be included during the filtering stage, like if it were defining a [kernel](./../7-Convolutional-Networks/INDEX.md#filters)
|
||||
|
||||
### ChebNet
|
||||
### ChebNet
|
||||
|
||||
The polynomial in ChebNet becomes:
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
p_{\vec{w}}(L) &= \sum_{i = 1}^{d} w_{i} T_{i}(\tilde{L}) \\
|
||||
T_{i} &= cos(i\theta) \\
|
||||
\tilde{L} &= \frac{2L}{\lambda_{\max}(L)} - I_{n}
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
- $T_{i}$ is Chebischev first kind polynomial
|
||||
- $\tilde{L}$ is a reduced version of $L$ because we divide for its max eigenvalue,
|
||||
keeping it in range $[-1, 1]$. Moreover $L$ ha no negative eigenvalues, so it's
|
||||
positive semi-definite
|
||||
|
||||
These polynomials are more stable as they do not explode with higher powers
|
||||
|
||||
### Embedding Computation
|
||||
|
||||
<!-- TODO: Read PDF 14 Anelli from 81 to 83 -->
|
||||
|
||||
## Other methods
|
||||
|
||||
- <span style="color:skyblue">Learnable parameters</span>
|
||||
- <span style="color:orange">Embeddings of node v</span>
|
||||
- <span style="color:violet">Embeddings of neighbours of v</span>
|
||||
|
||||
### Graph Convolutional Networks
|
||||
|
||||
$$
|
||||
\textcolor{orange}{h_{v}^{(k)}} =
|
||||
\textcolor{skyblue}{f^{(k)}} \left(
|
||||
\underbrace{\textcolor{skyblue}{W^{(k)}} \cdot
|
||||
\frac{
|
||||
\sum_{u \in \mathcal{N}(v)} \textcolor{violet}{h_{u}^{(k-1)}}
|
||||
}{
|
||||
|\mathcal{N}(v)|
|
||||
}}_{\text{mean of previous neighbour embeddings}} + \underbrace{\textcolor{skyblue}{B^{(k)}} \cdot
|
||||
\textcolor{orange}{h_{v}^{(k - 1)}}}_{\text{previous embeddings}}
|
||||
\right) \forall v \in V
|
||||
$$
|
||||
|
||||
### Graph Attention Networks
|
||||
|
||||
$$
|
||||
\textcolor{orange}{h_{v}^{(k)}} =
|
||||
\textcolor{skyblue}{f^{(k)}} \left(
|
||||
\textcolor{skyblue}{W^{(k)}} \cdot \left[
|
||||
\underbrace{
|
||||
\sum_{u \in \mathcal{N}(v)} \alpha^{(k-1)}_{v,u}
|
||||
\textcolor{violet}{h_{u}^{(k-1)}}
|
||||
}_{\text{weighted mean of previous neighbour embeddings}} +
|
||||
\underbrace{\alpha^{(k-1)}_{v,v}
|
||||
\textcolor{orange}{h_{v}^{(k-1)}}}_{\text{previous embeddings}}
|
||||
\right] \right) \forall v \in V
|
||||
$$
|
||||
|
||||
where
|
||||
|
||||
$$
|
||||
\alpha^{(k)}_{v,u} = \frac{
|
||||
\textcolor{skyblue}{A^{(k)}}(
|
||||
\textcolor{orange}{h_{v}^{(k)}},
|
||||
\textcolor{violet}{h_{u}^{(k)}},
|
||||
)
|
||||
}{
|
||||
\sum_{w \in \mathcal{N}(v)} \textcolor{skyblue}{A^{(k)}}(
|
||||
\textcolor{orange}{h_{v}^{(k)}},
|
||||
\textcolor{violet}{h_{w}^{(k)}},
|
||||
)
|
||||
} \forall (v, u) \in E
|
||||
$$
|
||||
|
||||
### Graph Sample and Aggregate (GraphSAGE)
|
||||
|
||||
<!-- TODO: See PDF 14 Anelli from 98 to 102 -->
|
||||
|
||||
### Graph Isomorphism Network (GIN)
|
||||
|
||||
$$
|
||||
\textcolor{orange}{h_{v}^{(k)}} =
|
||||
\textcolor{skyblue}{f^{(k)}}
|
||||
\left(
|
||||
\sum_{u \in \mathcal{N}(v)}
|
||||
\textcolor{violet}{h_{u}^{(k - 1)}} +
|
||||
(
|
||||
1 +
|
||||
\textcolor{skyblue}{\epsilon^{(k)}}
|
||||
) \cdot \textcolor{orange}{h_{v}^{(k - 1)}}
|
||||
\right)
|
||||
\forall v \in V
|
||||
$$
|
||||
Loading…
x
Reference in New Issue
Block a user