Added ch 14
This commit is contained in:
parent
82f8d8e906
commit
f5bc43c59b
@ -122,6 +122,8 @@ Take all node embeddings that are in the neighbouroud and do similar steps as th
|
|||||||
|
|
||||||
## Polynomial Filters
|
## Polynomial Filters
|
||||||
|
|
||||||
|
Each polynomial filter is order invariant
|
||||||
|
|
||||||
### Graph Laplacian
|
### Graph Laplacian
|
||||||
|
|
||||||
Let's set an order over nodes of a graph, where $A$ is the adjacency matrix:
|
Let's set an order over nodes of a graph, where $A$ is the adjacency matrix:
|
||||||
@ -195,4 +197,97 @@ $$
|
|||||||
> So this shows that the degree of the polynomial decides the max number of hops
|
> So this shows that the degree of the polynomial decides the max number of hops
|
||||||
> to be included during the filtering stage, like if it were defining a [kernel](./../7-Convolutional-Networks/INDEX.md#filters)
|
> to be included during the filtering stage, like if it were defining a [kernel](./../7-Convolutional-Networks/INDEX.md#filters)
|
||||||
|
|
||||||
### ChebNet
|
### ChebNet
|
||||||
|
|
||||||
|
The polynomial in ChebNet becomes:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
p_{\vec{w}}(L) &= \sum_{i = 1}^{d} w_{i} T_{i}(\tilde{L}) \\
|
||||||
|
T_{i} &= cos(i\theta) \\
|
||||||
|
\tilde{L} &= \frac{2L}{\lambda_{\max}(L)} - I_{n}
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
- $T_{i}$ is Chebischev first kind polynomial
|
||||||
|
- $\tilde{L}$ is a reduced version of $L$ because we divide for its max eigenvalue,
|
||||||
|
keeping it in range $[-1, 1]$. Moreover $L$ ha no negative eigenvalues, so it's
|
||||||
|
positive semi-definite
|
||||||
|
|
||||||
|
These polynomials are more stable as they do not explode with higher powers
|
||||||
|
|
||||||
|
### Embedding Computation
|
||||||
|
|
||||||
|
<!-- TODO: Read PDF 14 Anelli from 81 to 83 -->
|
||||||
|
|
||||||
|
## Other methods
|
||||||
|
|
||||||
|
- <span style="color:skyblue">Learnable parameters</span>
|
||||||
|
- <span style="color:orange">Embeddings of node v</span>
|
||||||
|
- <span style="color:violet">Embeddings of neighbours of v</span>
|
||||||
|
|
||||||
|
### Graph Convolutional Networks
|
||||||
|
|
||||||
|
$$
|
||||||
|
\textcolor{orange}{h_{v}^{(k)}} =
|
||||||
|
\textcolor{skyblue}{f^{(k)}} \left(
|
||||||
|
\underbrace{\textcolor{skyblue}{W^{(k)}} \cdot
|
||||||
|
\frac{
|
||||||
|
\sum_{u \in \mathcal{N}(v)} \textcolor{violet}{h_{u}^{(k-1)}}
|
||||||
|
}{
|
||||||
|
|\mathcal{N}(v)|
|
||||||
|
}}_{\text{mean of previous neighbour embeddings}} + \underbrace{\textcolor{skyblue}{B^{(k)}} \cdot
|
||||||
|
\textcolor{orange}{h_{v}^{(k - 1)}}}_{\text{previous embeddings}}
|
||||||
|
\right) \forall v \in V
|
||||||
|
$$
|
||||||
|
|
||||||
|
### Graph Attention Networks
|
||||||
|
|
||||||
|
$$
|
||||||
|
\textcolor{orange}{h_{v}^{(k)}} =
|
||||||
|
\textcolor{skyblue}{f^{(k)}} \left(
|
||||||
|
\textcolor{skyblue}{W^{(k)}} \cdot \left[
|
||||||
|
\underbrace{
|
||||||
|
\sum_{u \in \mathcal{N}(v)} \alpha^{(k-1)}_{v,u}
|
||||||
|
\textcolor{violet}{h_{u}^{(k-1)}}
|
||||||
|
}_{\text{weighted mean of previous neighbour embeddings}} +
|
||||||
|
\underbrace{\alpha^{(k-1)}_{v,v}
|
||||||
|
\textcolor{orange}{h_{v}^{(k-1)}}}_{\text{previous embeddings}}
|
||||||
|
\right] \right) \forall v \in V
|
||||||
|
$$
|
||||||
|
|
||||||
|
where
|
||||||
|
|
||||||
|
$$
|
||||||
|
\alpha^{(k)}_{v,u} = \frac{
|
||||||
|
\textcolor{skyblue}{A^{(k)}}(
|
||||||
|
\textcolor{orange}{h_{v}^{(k)}},
|
||||||
|
\textcolor{violet}{h_{u}^{(k)}},
|
||||||
|
)
|
||||||
|
}{
|
||||||
|
\sum_{w \in \mathcal{N}(v)} \textcolor{skyblue}{A^{(k)}}(
|
||||||
|
\textcolor{orange}{h_{v}^{(k)}},
|
||||||
|
\textcolor{violet}{h_{w}^{(k)}},
|
||||||
|
)
|
||||||
|
} \forall (v, u) \in E
|
||||||
|
$$
|
||||||
|
|
||||||
|
### Graph Sample and Aggregate (GraphSAGE)
|
||||||
|
|
||||||
|
<!-- TODO: See PDF 14 Anelli from 98 to 102 -->
|
||||||
|
|
||||||
|
### Graph Isomorphism Network (GIN)
|
||||||
|
|
||||||
|
$$
|
||||||
|
\textcolor{orange}{h_{v}^{(k)}} =
|
||||||
|
\textcolor{skyblue}{f^{(k)}}
|
||||||
|
\left(
|
||||||
|
\sum_{u \in \mathcal{N}(v)}
|
||||||
|
\textcolor{violet}{h_{u}^{(k - 1)}} +
|
||||||
|
(
|
||||||
|
1 +
|
||||||
|
\textcolor{skyblue}{\epsilon^{(k)}}
|
||||||
|
) \cdot \textcolor{orange}{h_{v}^{(k - 1)}}
|
||||||
|
\right)
|
||||||
|
\forall v \in V
|
||||||
|
$$
|
||||||
Loading…
x
Reference in New Issue
Block a user