104 lines
2.9 KiB
Python
Raw Normal View History

2025-10-05 15:40:29 +02:00
import torch
import torch.nn as nn
from .FeedForwardNetwork import FeedForwardNetwork
from .TorchMultiHeadAttention import TorchMultiHeadAttention as MultiHeadAttention
2025-10-06 13:03:03 +02:00
from ..Utils.attention_mask import get_causal_attention_mask
2025-10-05 17:49:01 +02:00
2025-10-06 13:03:03 +02:00
# B, L(T), E_D
2025-10-05 15:40:29 +02:00
class Decoder(nn.Module):
def __init__(
self,
embedding_dimension: int,
feed_forward_hidden_layer_dimension: int,
number_of_attention_heads: int,
) -> None:
super().__init__()
self.__masked_attention = MultiHeadAttention(
2025-10-06 13:03:03 +02:00
embedding_dimension, number_of_attention_heads, dropout=0.1
2025-10-05 15:40:29 +02:00
)
self.__layer_norm_1 = nn.LayerNorm(embedding_dimension)
self.__cross_attention = MultiHeadAttention(
embedding_dimension, number_of_attention_heads, dropout=0.1
)
self.__layer_norm_2 = nn.LayerNorm(embedding_dimension)
self.__dropout = nn.Dropout(0.1)
self.__feed_forward_network = FeedForwardNetwork(
embedding_dimension, feed_forward_hidden_layer_dimension
)
self.__layer_norm_3 = nn.LayerNorm(embedding_dimension)
2025-10-07 16:37:20 +02:00
def forward(
self,
args: tuple[
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
2025-10-07 16:37:20 +02:00
torch.Tensor
]
): # -> list[torch.Tensor]: # k_x = v_x . While x_q = x
# WARNING: args is needed to have sequential
x, k_x, v_x, src_padding_mask, tgt_padding_mask = args
2025-10-05 15:40:29 +02:00
2025-10-06 13:03:03 +02:00
# build of attention mask
attention_mask = get_causal_attention_mask(x.size(1))
2025-10-05 15:40:29 +02:00
# 1) Masked Attention
MASKED_ATTENTION = self.__masked_attention(
x, x, x, key_padding_mask=tgt_padding_mask, attention_mask=attention_mask
2025-10-05 15:40:29 +02:00
)
# 2) Dropout
2025-10-08 12:34:09 +02:00
# DROPPED_MASKED_ATTENTION = self.__dropout(MASKED_ATTENTION)
# del MASKED_ATTENTION
2025-10-05 15:40:29 +02:00
# 3) Residual Connection
2025-10-08 12:34:09 +02:00
x = x + MASKED_ATTENTION
del MASKED_ATTENTION
2025-10-05 15:40:29 +02:00
# 4) Layer Normalization
x = self.__layer_norm_1(x)
# 5) Encoderdecoder (cross) attention
2025-10-07 16:37:20 +02:00
CROSS_ATTENTION = self.__cross_attention(
x, k_x, v_x, key_padding_mask=src_padding_mask
2025-10-07 16:37:20 +02:00
)
2025-10-05 15:40:29 +02:00
# 6) Dropout
2025-10-08 12:34:09 +02:00
# DROPPED_CROSS_ATTENTION = self.__dropout(CROSS_ATTENTION)
# del CROSS_ATTENTION
2025-10-05 15:40:29 +02:00
# 7) Residual Connection
2025-10-08 12:34:09 +02:00
x = x + CROSS_ATTENTION
del CROSS_ATTENTION
2025-10-05 15:40:29 +02:00
# 8) Layer Normalization
x = self.__layer_norm_2(x)
# 9) Position-wise feed-forward
FEED_FORWARD = self.__feed_forward_network(x)
# 10) Dropout
2025-10-08 12:34:09 +02:00
# DROPPED_FEED_FORWARD = self.__dropout(FEED_FORWARD)
# del FEED_FORWARD
2025-10-05 15:40:29 +02:00
# 11) Residual Connection
2025-10-08 12:34:09 +02:00
x = x + FEED_FORWARD
del FEED_FORWARD
2025-10-05 15:40:29 +02:00
# 12) Layer Normalization
x = self.__layer_norm_3(x)
return (x, k_x, v_x, src_padding_mask, tgt_padding_mask)
2025-10-05 15:40:29 +02:00
# use eval to disable dropout ecc