Added actual test
This commit is contained in:
parent
b1e7af0607
commit
d3bba9b944
@ -8,30 +8,26 @@ VOCABULARY_PATH = Path("Assets/Model/toy_10/toy_dictionary.json")
|
||||
VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)
|
||||
SPECIAL_LIST = BPE.default_special_tokens()
|
||||
|
||||
|
||||
class TestSpannedMasker:
|
||||
|
||||
def test_spanned_masking(self):
|
||||
|
||||
CORPUS_PATH = Path("Project_Model/Tests/spanner_file/mask.txt")
|
||||
TEXT = CORPUS_PATH.read_text("utf-8")
|
||||
CORRUPTION_PERCENTAGE = 0.15
|
||||
TOLERANCE = 0.05
|
||||
|
||||
TOKENIZER = BPE.TokeNanoCore(
|
||||
VOCABULARY,
|
||||
SPECIAL_LIST
|
||||
)
|
||||
TOKENIZER = BPE.TokeNanoCore(VOCABULARY, SPECIAL_LIST)
|
||||
VOCABULARY_SIZE = TOKENIZER.vocabulary_size
|
||||
|
||||
MASKER = Transformer.SpannedMasker(0.4,average_span=3)
|
||||
MASKER = Transformer.SpannedMasker(CORRUPTION_PERCENTAGE, 3)
|
||||
|
||||
TOKENS = TOKENIZER.encode(TEXT)
|
||||
|
||||
LEGAL_TOKENS: set[int] = set(TOKENIZER.encode(
|
||||
"<SUBJ><OBJ><PRED>"
|
||||
))
|
||||
LEGAL_TOKENS: set[int] = set(TOKENIZER.encode("<SUBJ><OBJ><PRED>"))
|
||||
|
||||
SPECIAL_TOKENS: set[int] = set(TOKENIZER.encode(
|
||||
"".join(SPECIAL_LIST)
|
||||
))
|
||||
SPECIAL_TOKENS: set[int] = set(TOKENIZER.encode("".join(SPECIAL_LIST)))
|
||||
|
||||
ILLEGAL_TOKENS: set[int] = SPECIAL_TOKENS.difference(LEGAL_TOKENS)
|
||||
|
||||
@ -40,34 +36,52 @@ class TestSpannedMasker:
|
||||
|
||||
OUTPUT, TARGET = MASKER.mask_sequence(TOKENS, VOCABULARY_SIZE, ILLEGAL_TOKENS)
|
||||
|
||||
UNCORRUPTED_TOKENS = list(filter(lambda token: token <= VOCABULARY_SIZE, OUTPUT))
|
||||
UNCORRUPTED_TOKENS = list(
|
||||
filter(lambda token: token <= VOCABULARY_SIZE, OUTPUT)
|
||||
)
|
||||
CORRUPTED_TOKENS = list(filter(lambda token: token <= VOCABULARY_SIZE, TARGET))
|
||||
|
||||
TARGET.append(END_FORMATTER)
|
||||
|
||||
OUTPUT = list(map(lambda token: SPECIAL_FORMATTER if token > VOCABULARY_SIZE else token, OUTPUT))
|
||||
TARGET = list(map(lambda token: SPECIAL_FORMATTER if token > VOCABULARY_SIZE else token, TARGET))
|
||||
OUTPUT = list(
|
||||
map(
|
||||
lambda token: SPECIAL_FORMATTER if token > VOCABULARY_SIZE else token,
|
||||
OUTPUT,
|
||||
)
|
||||
)
|
||||
TARGET = list(
|
||||
map(
|
||||
lambda token: SPECIAL_FORMATTER if token > VOCABULARY_SIZE else token,
|
||||
TARGET,
|
||||
)
|
||||
)
|
||||
|
||||
OUT_TEXT = TOKENIZER.decode(OUTPUT)
|
||||
TAR_TEXT = TOKENIZER.decode(TARGET)
|
||||
|
||||
ACTUAL_CORRUPTION_PERCENTAGE = len(CORRUPTED_TOKENS) / len(TOKENS)
|
||||
|
||||
print(f"Original text:\n\n{TEXT}")
|
||||
print(f"Inputs:\n\n{OUT_TEXT}")
|
||||
print(f"Targets:\n\n{TAR_TEXT}")
|
||||
print(f"Target Tokens:\n\n{OUTPUT}")
|
||||
|
||||
print("\n".join([
|
||||
f"======================",
|
||||
f"Original length: {len(TOKENS)}",
|
||||
f"Uncorrupted Chars: {len(UNCORRUPTED_TOKENS)}",
|
||||
f"Corrupted Chars: {len(CORRUPTED_TOKENS)}",
|
||||
f"Percentage_corruption: {(len(CORRUPTED_TOKENS)/len(TOKENS))*100}%",
|
||||
f"======================"
|
||||
]))
|
||||
print(
|
||||
"\n".join(
|
||||
[
|
||||
f"======================",
|
||||
f"Original length: {len(TOKENS)}",
|
||||
f"Uncorrupted Chars: {len(UNCORRUPTED_TOKENS)}",
|
||||
f"Corrupted Chars: {len(CORRUPTED_TOKENS)}",
|
||||
f"Percentage_corruption: {(len(CORRUPTED_TOKENS)/len(TOKENS))*100}%",
|
||||
f"======================",
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
assert ACTUAL_CORRUPTION_PERCENTAGE > CORRUPTION_PERCENTAGE - TOLERANCE
|
||||
assert ACTUAL_CORRUPTION_PERCENTAGE < CORRUPTION_PERCENTAGE + TOLERANCE
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
TestSpannedMasker().test_spanned_masking()
|
||||
|
||||
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user