Compare commits
21 Commits
dev.report
...
dev.etl
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
856c693650 | ||
|
|
e9d30b3cea | ||
|
|
ee12f53f12 | ||
|
|
a04f4c7cb7 | ||
|
|
a93e61b8c1 | ||
|
|
0373460105 | ||
|
|
7307916891 | ||
|
|
acb43fc899 | ||
|
|
255d801a80 | ||
|
|
2bd24ec278 | ||
|
|
69fba7c3e9 | ||
|
|
64e355e80c | ||
|
|
007f1e9554 | ||
|
|
c319398ca0 | ||
|
|
255d8a072d | ||
|
|
8167c9d435 | ||
|
|
bd72ad3571 | ||
|
|
6ddb7de9da | ||
|
|
650b37c586 | ||
|
|
e521b0704e | ||
|
|
0a698e9837 |
24
.vscode/settings.json
vendored
Normal file
24
.vscode/settings.json
vendored
Normal file
@@ -0,0 +1,24 @@
|
|||||||
|
{
|
||||||
|
// Always treat the project root as the working dir for Jupyter
|
||||||
|
"jupyter.notebookFileRoot": "${workspaceFolder}",
|
||||||
|
|
||||||
|
// When you click "Run Python File in Terminal", DON'T cd into the file's folder
|
||||||
|
"python.terminal.executeInFileDir": false,
|
||||||
|
|
||||||
|
// Start new integrated terminals at the project root
|
||||||
|
"terminal.integrated.cwd": "${workspaceFolder}",
|
||||||
|
|
||||||
|
// Ensure Python can import from the project root no matter which file you run
|
||||||
|
// (so `src/` is on sys.path). Linux shown here; add osx/windows if needed.
|
||||||
|
"terminal.integrated.env.linux": {
|
||||||
|
"PYTHONPATH": "${workspaceFolder}"
|
||||||
|
},
|
||||||
|
|
||||||
|
// Make pytest run from the root without needing a pytest.ini
|
||||||
|
"python.testing.pytestEnabled": true,
|
||||||
|
"python.testing.cwd": "${workspaceFolder}",
|
||||||
|
"python.testing.pytestArgs": ["src/test"],
|
||||||
|
|
||||||
|
// Help Pylance resolve imports like `from src...` without red squiggles
|
||||||
|
"python.analysis.extraPaths": ["${workspaceFolder}"]
|
||||||
|
}
|
||||||
21
Scripts/DataCleaning/data_output_models/bpe_corpus.py
Normal file
21
Scripts/DataCleaning/data_output_models/bpe_corpus.py
Normal file
@@ -0,0 +1,21 @@
|
|||||||
|
from Scripts.Libs.Utils.dataframe_interaction import get_raw_from_dataframe
|
||||||
|
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
class BPE_corpus():
|
||||||
|
|
||||||
|
def __init__(self, output_path :str):
|
||||||
|
self.output_handler = open(output_path, "w")
|
||||||
|
|
||||||
|
def close(self):
|
||||||
|
# add corpus end before closing
|
||||||
|
self.output_handler.write(SpecialToken.CORPUS_END.value)
|
||||||
|
self.output_handler.close()
|
||||||
|
|
||||||
|
def write_from_str(self, output: str):
|
||||||
|
if output == '':
|
||||||
|
return
|
||||||
|
self.output_handler.write(output)
|
||||||
|
|
||||||
|
def write_from_df(self, df: pd.DataFrame):
|
||||||
|
self.write_from_str(get_raw_from_dataframe(df))
|
||||||
21
Scripts/DataCleaning/data_output_models/debug_csv.py
Normal file
21
Scripts/DataCleaning/data_output_models/debug_csv.py
Normal file
@@ -0,0 +1,21 @@
|
|||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
class Debug_csv():
|
||||||
|
def __init__(self, output_path:str):
|
||||||
|
|
||||||
|
|
||||||
|
self.output = open(output_path, "w")
|
||||||
|
# then the first row as header
|
||||||
|
header = ["MovieURI","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
|
||||||
|
self.output.write(",".join(header) + "\n")
|
||||||
|
|
||||||
|
def close(self):
|
||||||
|
self.output.close()
|
||||||
|
|
||||||
|
def write(self, RDF: pd.DataFrame):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
RDF (pd.DataFrame): ["MovieURI","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
|
||||||
|
"""
|
||||||
|
|
||||||
|
RDF.to_csv(self.output, index=False, header=False)
|
||||||
@@ -0,0 +1,26 @@
|
|||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
class RDF_completation_task_dataset():
|
||||||
|
"""
|
||||||
|
Write the CSV for the fourth task, which is "Predicting subsequent triples based on a given context".
|
||||||
|
Each RDF is saved as str
|
||||||
|
CSV Composition: ["MovieID","RDF"]
|
||||||
|
"""
|
||||||
|
def __init__(self, output_path:str):
|
||||||
|
|
||||||
|
|
||||||
|
self.output = open(output_path, "w")
|
||||||
|
# then the first row as header
|
||||||
|
header = ["MovieID","RDF"]
|
||||||
|
self.output.write(",".join(header) + "\n")
|
||||||
|
|
||||||
|
def close(self):
|
||||||
|
self.output.close()
|
||||||
|
|
||||||
|
def write(self, RDF: pd.DataFrame):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
RDF (pd.DataFrame): ["MovieID","RDF"]
|
||||||
|
"""
|
||||||
|
|
||||||
|
RDF.to_csv(self.output, index=False, header=False)
|
||||||
58
Scripts/DataCleaning/data_output_models/rdf_mask_task.py
Normal file
58
Scripts/DataCleaning/data_output_models/rdf_mask_task.py
Normal file
@@ -0,0 +1,58 @@
|
|||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
# do not worry about circular dependencies, this class will never call something else
|
||||||
|
from Scripts.DataCleaning.legacy.filter import PipelineApplier
|
||||||
|
|
||||||
|
class RDF_mask_task_dataset():
|
||||||
|
"""
|
||||||
|
Write the CSV for the third task, which is "Predicting a masked component within an RDF triple".
|
||||||
|
The CSV is like: for each RDF there will be 3 rows, where every time one of the componments is missing.
|
||||||
|
CSV Composition: ["MovieID","IncompleteRDF","Missing","RDF"]
|
||||||
|
"""
|
||||||
|
def __init__(self, output_path:str):
|
||||||
|
|
||||||
|
# this methods will only be used by this class, but they belong in a lower level
|
||||||
|
self._build_triple = PipelineApplier.build_triple
|
||||||
|
self._build_incomplete_triple = PipelineApplier.build_incomplete_triple
|
||||||
|
|
||||||
|
self.output = open(output_path, "w")
|
||||||
|
# then the first row as header
|
||||||
|
header = ["MovieID","IncompleteRDF","Missing","RDF"]
|
||||||
|
self.output.write(",".join(header) + "\n")
|
||||||
|
|
||||||
|
def close(self):
|
||||||
|
self.output.close()
|
||||||
|
|
||||||
|
def write(self, RDF: pd.DataFrame):
|
||||||
|
rdf_complete = self._build_triple(RDF)
|
||||||
|
|
||||||
|
rdf_without_subject = self._build_incomplete_triple(RDF.drop(columns=["SubjectURI"]))
|
||||||
|
rdf_without_relationship = self._build_incomplete_triple(RDF.drop(columns=["RelationshipURI"]))
|
||||||
|
rdf_without_object = self._build_incomplete_triple(RDF.drop(columns=["ObjectURI"]))
|
||||||
|
####
|
||||||
|
df_subject = pd.DataFrame({
|
||||||
|
"MovieID": RDF["MovieID"],
|
||||||
|
"IncompleteRDF": rdf_without_subject,
|
||||||
|
"Missing": RDF["SubjectURI"],
|
||||||
|
"RDF": rdf_complete,
|
||||||
|
})
|
||||||
|
|
||||||
|
df_relationship = pd.DataFrame({
|
||||||
|
"MovieID": RDF["MovieID"],
|
||||||
|
"IncompleteRDF": rdf_without_relationship,
|
||||||
|
"Missing": RDF["RelationshipURI"],
|
||||||
|
"RDF": rdf_complete,
|
||||||
|
})
|
||||||
|
|
||||||
|
df_object = pd.DataFrame({
|
||||||
|
"MovieID": RDF["MovieID"],
|
||||||
|
"IncompleteRDF": rdf_without_object,
|
||||||
|
"Missing": RDF["ObjectURI"],
|
||||||
|
"RDF": rdf_complete,
|
||||||
|
})
|
||||||
|
|
||||||
|
|
||||||
|
output_df = pd.concat([df_subject, df_relationship, df_object], ignore_index=True)
|
||||||
|
output_df.to_csv(self.output, index=False, header=False)
|
||||||
|
|
||||||
|
|
||||||
26
Scripts/DataCleaning/data_output_models/rdf_text_tasks.py
Normal file
26
Scripts/DataCleaning/data_output_models/rdf_text_tasks.py
Normal file
@@ -0,0 +1,26 @@
|
|||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
class RDF_text_task_dataset():
|
||||||
|
"""
|
||||||
|
Write the CSV for the firsts two tasks, which are "Generating structured RDF triples from natural language text" and reverse.
|
||||||
|
In the CVS the RDFs will be saved toghether as a string.
|
||||||
|
CSV Composition: ["MovieID","RDFs","Abstract"]
|
||||||
|
"""
|
||||||
|
def __init__(self, output_path:str):
|
||||||
|
|
||||||
|
|
||||||
|
self.output = open(output_path, "w")
|
||||||
|
# then the first row as header
|
||||||
|
header = ["MovieID","RDFs","Abstract"]
|
||||||
|
self.output.write(",".join(header) + "\n")
|
||||||
|
|
||||||
|
def close(self):
|
||||||
|
self.output.close()
|
||||||
|
|
||||||
|
def write(self, RDF: pd.DataFrame):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
RDF (pd.DataFrame): ["MovieID","Triple","Abstract"]
|
||||||
|
"""
|
||||||
|
|
||||||
|
RDF.to_csv(self.output, index=False, header=False)
|
||||||
29
Scripts/DataCleaning/hold_out/divide.py
Normal file
29
Scripts/DataCleaning/hold_out/divide.py
Normal file
@@ -0,0 +1,29 @@
|
|||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
def split_csv_by_percent(csv_path, train=70, val=15, test=15, seed=42):
|
||||||
|
# 1) Read and shuffle rows with a fixed seed for reproducibility
|
||||||
|
df = pd.read_csv(csv_path).sample(frac=1, random_state=seed).reset_index(drop=True)
|
||||||
|
|
||||||
|
# 2) Turn the three inputs into proportions relative to their sum
|
||||||
|
total = train + val + test # eheh you got it there :p
|
||||||
|
n = len(df)
|
||||||
|
n_train = int(n * train / total) # floor to keep indices integral
|
||||||
|
n_val = int(n * val / total)
|
||||||
|
# 3) Give the remainder to test to ensure every row is assigned
|
||||||
|
# (this naturally absorbs any rounding loss)
|
||||||
|
train_df = df.iloc[:n_train].reset_index(drop=True)
|
||||||
|
val_df = df.iloc[n_train:n_train + n_val].reset_index(drop=True)
|
||||||
|
test_df = df.iloc[n_train + n_val:].reset_index(drop=True)
|
||||||
|
|
||||||
|
return train_df, val_df, test_df
|
||||||
|
|
||||||
|
# usage:
|
||||||
|
DATASET = "Assets/Dataset/Tmp/rdf_text.csv"
|
||||||
|
TRAIN = "Assets/Dataset/Tmp/hold_out/train.csv"
|
||||||
|
TEST = "Assets/Dataset/Tmp/hold_out/test.csv"
|
||||||
|
EVALUATION = "Assets/Dataset/Tmp/hold_out/evaluation.csv"
|
||||||
|
train_df, val_df, test_df = split_csv_by_percent(DATASET, train=80, val=10, test=10, seed=42)
|
||||||
|
|
||||||
|
train_df.to_csv(TRAIN)
|
||||||
|
val_df.to_csv(EVALUATION)
|
||||||
|
test_df.to_csv(TEST)
|
||||||
381
Scripts/DataCleaning/legacy/deprecated.py
Normal file
381
Scripts/DataCleaning/legacy/deprecated.py
Normal file
@@ -0,0 +1,381 @@
|
|||||||
|
# This file deletes in the pipeline the unwanted relationship by different rules
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
# SQL-FIRST VERSION
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
# In the original (pandas) version this module:
|
||||||
|
# - stored frequency filters in DataFrames,
|
||||||
|
# - filtered/cleaned DataFrames in-memory,
|
||||||
|
# - added special tokens via string ops,
|
||||||
|
# - rebuilt one row per movie using groupby/aggregation.
|
||||||
|
#
|
||||||
|
# In this rewrite:
|
||||||
|
# - Every transformation RETURNS a SQLAlchemy `Select` object instead of a DataFrame.
|
||||||
|
# - Your pipeline can pass this `Select` (a "dataview") from one stage to the next,
|
||||||
|
# composing more SQL lazily. Nothing is executed until you call `session.execute(...)`.
|
||||||
|
# - Frequency filters are represented as SUBSELECTS, applied with `WHERE IN (subquery)`.
|
||||||
|
#
|
||||||
|
# Notes:
|
||||||
|
# - We keep the same CLASS and METHOD NAMES to preserve call sites.
|
||||||
|
# - Method comments/docstrings from your original file are carried over and updated
|
||||||
|
# to reflect Select-based behavior and return types.
|
||||||
|
# - We drop pandas/numpy/sqlite3 imports because filtering is pushed into SQL.
|
||||||
|
# - `GROUP_CONCAT` is used for the rebuild phase (SQLite-compatible). For other DBs,
|
||||||
|
# swap with an equivalent string-agg function.
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
from __future__ import annotations
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
from sqlalchemy import select, func, literal
|
||||||
|
from sqlalchemy.sql import Select
|
||||||
|
|
||||||
|
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
|
||||||
|
|
||||||
|
|
||||||
|
class PipelineApplier():
|
||||||
|
"""
|
||||||
|
SQL-first pipeline applier.
|
||||||
|
|
||||||
|
In the pandas version, frequency filters were stored as DataFrames (self.MOVIE_FILTER / self.REL_FILTER)
|
||||||
|
and every method worked with/returned pandas.DataFrame. In this SQLAlchemy rewrite:
|
||||||
|
|
||||||
|
- self.MOVIE_FILTER and self.REL_FILTER become *subselects* (Select objects) that yield a single
|
||||||
|
column each (MovieID or RelationshipURI). These subselects can be applied via `WHERE IN (subquery)`.
|
||||||
|
|
||||||
|
- Every method that previously returned a DataFrame now returns a *Select* that represents the same
|
||||||
|
logical transformation, but pushed into the database engine.
|
||||||
|
|
||||||
|
- Comments and docstrings are updated to reflect SQL semantics while preserving your original intent.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
# In the pandas version these were DataFrames storing allowed keys.
|
||||||
|
# Here they are Select objects (single-column subselects) or None.
|
||||||
|
# Expected column names:
|
||||||
|
# - self.MOVIE_FILTER: "MovieID"
|
||||||
|
# - self.REL_FILTER: "RelationshipURI"
|
||||||
|
self.MOVIE_FILTER: Optional[Select] = None
|
||||||
|
self.REL_FILTER: Optional[Select] = None
|
||||||
|
|
||||||
|
# -------------------------------------------------------------------------
|
||||||
|
# Relationship deletion
|
||||||
|
# -------------------------------------------------------------------------
|
||||||
|
def delete_relationship_by_str(self, RDF: Select, uri: str) -> Select:
|
||||||
|
"""
|
||||||
|
Return a Select where rows having the given relationship URI are removed.
|
||||||
|
|
||||||
|
Original signature (pandas):
|
||||||
|
def delete_relationship_by_str(self, RDF: pd.DataFrame, uri: str) -> pd.DataFrame
|
||||||
|
|
||||||
|
Updated behavior:
|
||||||
|
- RDF is a Select with columns: MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
|
||||||
|
- We apply a WHERE clause: RelationshipURI != <uri>
|
||||||
|
- Returns a Select you can continue composing.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
RDF (Select): a selectable representing the RDF joined view
|
||||||
|
uri (str): RelationshipURI to exclude
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Select: filtered selectable (no execution yet)
|
||||||
|
"""
|
||||||
|
sc = RDF.selected_columns
|
||||||
|
return RDF.where(sc.RelationshipURI != literal(uri))
|
||||||
|
|
||||||
|
# -------------------------------------------------------------------------
|
||||||
|
# Frequency filter: MOVIE
|
||||||
|
# -------------------------------------------------------------------------
|
||||||
|
def generate_frequency_movie_filter(self, MOVIE_COUNT: Select, min_treshold: int, max_treshold: int):
|
||||||
|
"""
|
||||||
|
You MUST call this before filtering by movie frequency [filter_by_frequency_movie_id()],
|
||||||
|
since this method creates such filter.
|
||||||
|
|
||||||
|
Original behavior:
|
||||||
|
- Input MOVIE_COUNT as DataFrame ["MovieID","Count"]
|
||||||
|
- Keep rows where Count in [min_treshold, max_treshold)
|
||||||
|
- Store the filtered keys in self.MOVIE_FILTER
|
||||||
|
|
||||||
|
Updated behavior (SQL):
|
||||||
|
- MOVIE_COUNT is a Select that yields ["MovieID","Count"].
|
||||||
|
- We build and store a *subselect* of allowed MovieID (single column) to be used by WHERE IN.
|
||||||
|
- No query is executed here; we only create a new Select.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
MOVIE_COUNT (Select): yields columns MovieID, Count
|
||||||
|
min_treshold (int):
|
||||||
|
max_treshold (int):
|
||||||
|
"""
|
||||||
|
sc = MOVIE_COUNT.selected_columns
|
||||||
|
filtered = MOVIE_COUNT.where(sc.Count >= min_treshold).where(sc.Count < max_treshold)
|
||||||
|
# Keep only the key column so it can be used in an IN (subquery)
|
||||||
|
self.MOVIE_FILTER = select(filtered.selected_columns.MovieID)
|
||||||
|
|
||||||
|
# -------------------------------------------------------------------------
|
||||||
|
# Frequency filter: RELATIONSHIP
|
||||||
|
# -------------------------------------------------------------------------
|
||||||
|
def generate_frequency_relationship_filter(self, REL_COUNT: Select, min_treshold: int, max_treshold: int):
|
||||||
|
"""
|
||||||
|
Original behavior:
|
||||||
|
- Input REL_COUNT as DataFrame ["RelationshipURI","Count"]
|
||||||
|
- Keep rows where Count in [min_treshold, max_treshold)
|
||||||
|
- Store the filtered keys in self.REL_FILTER
|
||||||
|
|
||||||
|
Updated behavior (SQL):
|
||||||
|
- REL_COUNT is a Select that yields ["RelationshipURI","Count"].
|
||||||
|
- We build and store a *subselect* of allowed RelationshipURI (single column) to be used by WHERE IN.
|
||||||
|
- No query is executed here; we only create a new Select.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
REL_COUNT (Select): yields columns RelationshipURI, Count
|
||||||
|
min_treshold (int):
|
||||||
|
max_treshold (int):
|
||||||
|
"""
|
||||||
|
sc = REL_COUNT.selected_columns
|
||||||
|
filtered = REL_COUNT.where(sc.Count >= min_treshold).where(sc.Count < max_treshold)
|
||||||
|
self.REL_FILTER = select(filtered.selected_columns.RelationshipURI)
|
||||||
|
|
||||||
|
# -------------------------------------------------------------------------
|
||||||
|
# Apply frequency filters
|
||||||
|
# -------------------------------------------------------------------------
|
||||||
|
def filter_by_frequency_movie_id(self, RDF: Select) -> Select:
|
||||||
|
"""
|
||||||
|
Original behavior (pandas):
|
||||||
|
RDF = RDF[RDF["MovieID"].isin(self.MOVIE_FILTER["MovieID"])]
|
||||||
|
|
||||||
|
Updated behavior (SQL):
|
||||||
|
- If self.MOVIE_FILTER is present, apply: WHERE MovieID IN ( <subselect> )
|
||||||
|
- Otherwise, return RDF unchanged.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
RDF (Select): current dataset
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Select: filtered dataset (or unchanged if no filter exists)
|
||||||
|
"""
|
||||||
|
if self.MOVIE_FILTER is None:
|
||||||
|
return RDF
|
||||||
|
sc = RDF.selected_columns
|
||||||
|
return RDF.where(sc.MovieID.in_(self.MOVIE_FILTER))
|
||||||
|
|
||||||
|
def filter_by_frequency_relationship(self, RDF: Select) -> Select:
|
||||||
|
"""
|
||||||
|
Original behavior (pandas):
|
||||||
|
RDF = RDF[RDF["RelationshipURI"].isin(self.REL_FILTER["RelationshipURI"])]
|
||||||
|
|
||||||
|
Updated behavior (SQL):
|
||||||
|
- If self.REL_FILTER is present, apply: WHERE RelationshipURI IN ( <subselect> )
|
||||||
|
- Otherwise, return RDF unchanged.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
RDF (Select): current dataset
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Select: filtered dataset (or unchanged if no filter exists)
|
||||||
|
"""
|
||||||
|
if self.REL_FILTER is None:
|
||||||
|
return RDF
|
||||||
|
sc = RDF.selected_columns
|
||||||
|
return RDF.where(sc.RelationshipURI.in_(self.REL_FILTER))
|
||||||
|
|
||||||
|
# -------------------------------------------------------------------------
|
||||||
|
# Token prefixing (SubjectURI/RelationshipURI/ObjectURI)
|
||||||
|
# -------------------------------------------------------------------------
|
||||||
|
def rdf_add_special_token(self, RDF: Select) -> Select:
|
||||||
|
"""
|
||||||
|
Adds RDF special token to each element of the tuple. i.e: SUBJ to SubjectURI,
|
||||||
|
OBJ to ObjectURI, REL to RelationshipURI. Check
|
||||||
|
Scripts/Libs/CleaningPipeline/special_token.py for the up-to-date special token.
|
||||||
|
|
||||||
|
It only adds the special token of the three elements of the RDF; no other special token.
|
||||||
|
|
||||||
|
Original behavior (pandas):
|
||||||
|
- String concatenation with columns in a DataFrame.
|
||||||
|
- Returned a new DataFrame.
|
||||||
|
|
||||||
|
Updated behavior (SQL):
|
||||||
|
- Build projected columns using SQL string concatenation.
|
||||||
|
- Return a new Select with the same output column names:
|
||||||
|
["MovieID","SubjectURI","RelationshipURI","ObjectURI","Abstract"].
|
||||||
|
|
||||||
|
Args:
|
||||||
|
RDF (Select): current dataset
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Select: projected dataset with tokenized SubjectURI/RelationshipURI/ObjectURI
|
||||||
|
"""
|
||||||
|
sc = RDF.selected_columns
|
||||||
|
subj_tok = literal(SpecialToken.SUBJECT.value) + sc.SubjectURI
|
||||||
|
rel_tok = literal(SpecialToken.RELATIONSHIP.value) + sc.RelationshipURI
|
||||||
|
obj_tok = literal(SpecialToken.OBJECT.value) + sc.ObjectURI
|
||||||
|
|
||||||
|
return RDF.with_only_columns(
|
||||||
|
sc.MovieID.label("MovieID"),
|
||||||
|
subj_tok.label("SubjectURI"),
|
||||||
|
rel_tok.label("RelationshipURI"),
|
||||||
|
obj_tok.label("ObjectURI"),
|
||||||
|
sc.Abstract.label("Abstract"),
|
||||||
|
)
|
||||||
|
|
||||||
|
# -------------------------------------------------------------------------
|
||||||
|
# NA/empty drop on key columns (SubjectURI, RelationshipURI, ObjectURI)
|
||||||
|
# -------------------------------------------------------------------------
|
||||||
|
def drop_na_from_dataset(self, RDF: Select) -> Select:
|
||||||
|
"""
|
||||||
|
Dataset has SubjectURI, RelationshipURI, ObjectURI. We want to drop rows
|
||||||
|
where any of these is empty or NULL.
|
||||||
|
|
||||||
|
Original behavior (pandas):
|
||||||
|
- Replace '' with NaN and dropna on the three columns.
|
||||||
|
|
||||||
|
Updated behavior (SQL):
|
||||||
|
- Apply WHERE clauses checking for NOT NULL and not empty string.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
RDF (Select): current dataset
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Select: dataset filtered to non-empty SubjectURI/RelationshipURI/ObjectURI
|
||||||
|
"""
|
||||||
|
sc = RDF.selected_columns
|
||||||
|
return RDF.where(
|
||||||
|
(sc.SubjectURI.is_not(None)) & (sc.SubjectURI != "") &
|
||||||
|
(sc.RelationshipURI.is_not(None)) & (sc.RelationshipURI != "") &
|
||||||
|
(sc.ObjectURI.is_not(None)) & (sc.ObjectURI != "")
|
||||||
|
)
|
||||||
|
|
||||||
|
# -------------------------------------------------------------------------
|
||||||
|
# Rebuild by movie (one row per movie)
|
||||||
|
# -------------------------------------------------------------------------
|
||||||
|
def rebuild_by_movie(self, RDF: Select) -> Select:
|
||||||
|
"""
|
||||||
|
To execute this method you have to have iterated by movie_id conceptually,
|
||||||
|
because as design we want at the end one row for each movie.
|
||||||
|
|
||||||
|
Original behavior (pandas):
|
||||||
|
- Build per-row "Triple" as SubjectURI + RelationshipURI + ObjectURI,
|
||||||
|
wrapped with START_TRIPLE/END_TRIPLE.
|
||||||
|
- Group by ["MovieID", "Abstract"] and join ("".join) all Triple strings into one.
|
||||||
|
- Prefix the whole list with START_TRIPLE_LIST and Abstract with ABSTRACT.
|
||||||
|
- Return DataFrame [["MovieID","Triple","Abstract"]].
|
||||||
|
|
||||||
|
Updated behavior (SQL):
|
||||||
|
- Build per-row Triple using SQL string concatenation and constants.
|
||||||
|
- Use GROUP_CONCAT (empty separator) to aggregate per-movie.
|
||||||
|
- Prefix with START_TRIPLE_LIST and ABSTRACT in SQL.
|
||||||
|
- Return a Select with columns: ["MovieID","Triple","Abstract"].
|
||||||
|
|
||||||
|
Args:
|
||||||
|
RDF (Select): current dataset with columns
|
||||||
|
MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Select: aggregated dataset with one row per movie
|
||||||
|
"""
|
||||||
|
sc = RDF.selected_columns
|
||||||
|
|
||||||
|
# Per-row triple with START/END_TRIPLE tokens
|
||||||
|
row_triple = (
|
||||||
|
literal(SpecialToken.START_TRIPLE.value) +
|
||||||
|
(sc.SubjectURI + sc.RelationshipURI + sc.ObjectURI) +
|
||||||
|
literal(SpecialToken.END_TRIPLE.value)
|
||||||
|
).label("Triple")
|
||||||
|
|
||||||
|
# Prefixed abstract
|
||||||
|
abstract_tok = (literal(SpecialToken.ABSTRACT.value) + sc.Abstract).label("Abstract")
|
||||||
|
|
||||||
|
# Subquery of per-row triples / abstracts
|
||||||
|
row_view = RDF.with_only_columns(
|
||||||
|
sc.MovieID.label("MovieID"),
|
||||||
|
row_triple,
|
||||||
|
abstract_tok,
|
||||||
|
).subquery()
|
||||||
|
|
||||||
|
# Concatenate all triples for each movie (SQLite syntax; adjust for other DBs)
|
||||||
|
triple_concat = (
|
||||||
|
literal(SpecialToken.START_TRIPLE_LIST.value) +
|
||||||
|
func.group_concat(row_view.c.Triple, literal(""))
|
||||||
|
).label("Triple")
|
||||||
|
|
||||||
|
return (
|
||||||
|
select(
|
||||||
|
row_view.c.MovieID.label("MovieID"),
|
||||||
|
triple_concat,
|
||||||
|
row_view.c.Abstract.label("Abstract"),
|
||||||
|
)
|
||||||
|
.group_by(row_view.c.MovieID, row_view.c.Abstract)
|
||||||
|
)
|
||||||
|
|
||||||
|
# -------------------------------------------------------------------------
|
||||||
|
# Build triple(s) projection
|
||||||
|
# -------------------------------------------------------------------------
|
||||||
|
@staticmethod
|
||||||
|
def build_triple(RDF: Select) -> Select:
|
||||||
|
"""
|
||||||
|
Obtains joined RDF triple in one element, together with START and END special tokens.
|
||||||
|
|
||||||
|
Original behavior (pandas):
|
||||||
|
- Returned a Series/DataFrame column "Triple" built from three string columns.
|
||||||
|
|
||||||
|
Updated behavior (SQL):
|
||||||
|
- Returns a Select with a single column "Triple" built in SQL.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
RDF (Select): at least columns ["SubjectURI", "RelationshipURI", "ObjectURI"]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Select: a projection containing one column named "Triple"
|
||||||
|
"""
|
||||||
|
sc = RDF.selected_columns
|
||||||
|
triple = (
|
||||||
|
literal(SpecialToken.START_TRIPLE.value) +
|
||||||
|
(sc.SubjectURI + sc.RelationshipURI + sc.ObjectURI) +
|
||||||
|
literal(SpecialToken.END_TRIPLE.value)
|
||||||
|
).label("Triple")
|
||||||
|
return RDF.with_only_columns(triple)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def build_incomplete_triple(RDF: Select) -> Select:
|
||||||
|
"""
|
||||||
|
Method helper used for the third task: "Predicting a masked component within an RDF triple".
|
||||||
|
Obtains joined RDF triple in one element, together with START and END special tokens.
|
||||||
|
The MISSING element will be replaced by the special token <MASK>.
|
||||||
|
|
||||||
|
Original behavior (pandas):
|
||||||
|
- Created a Series "Triple" using fallback values for missing columns.
|
||||||
|
|
||||||
|
Updated behavior (SQL):
|
||||||
|
- Uses COALESCE to replace NULLs with <MASK> directly in SQL.
|
||||||
|
- Returns a Select with a single column "Triple".
|
||||||
|
|
||||||
|
Args:
|
||||||
|
RDF (Select): 2 of the following columns present ["SubjectURI", "RelationshipURI", "ObjectURI"]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Select: projection with column "Triple"
|
||||||
|
"""
|
||||||
|
sc = RDF.selected_columns
|
||||||
|
mask = literal(SpecialToken.MASK.value)
|
||||||
|
|
||||||
|
triple = (
|
||||||
|
literal(SpecialToken.START_TRIPLE.value) +
|
||||||
|
(func.coalesce(sc.SubjectURI, mask) +
|
||||||
|
func.coalesce(sc.RelationshipURI, mask) +
|
||||||
|
func.coalesce(sc.ObjectURI, mask)) +
|
||||||
|
literal(SpecialToken.END_TRIPLE.value)
|
||||||
|
).label("Triple")
|
||||||
|
return RDF.with_only_columns(triple)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def build_for_mask_task(RDF_incomplete: Select, MISSING) -> None:
|
||||||
|
"""
|
||||||
|
Currently not used.
|
||||||
|
|
||||||
|
Original intention:
|
||||||
|
Given two DataFrames (one incomplete RDF and another with just the missing component),
|
||||||
|
apply special tokens accordingly.
|
||||||
|
|
||||||
|
Updated note:
|
||||||
|
This stub remains for API parity. If needed in the future, it can be implemented
|
||||||
|
as a Select-building helper that merges/COALESCEs columns from different selects.
|
||||||
|
"""
|
||||||
|
return None
|
||||||
148
Scripts/DataCleaning/legacy/fast_filter.py
Normal file
148
Scripts/DataCleaning/legacy/fast_filter.py
Normal file
@@ -0,0 +1,148 @@
|
|||||||
|
# This file deletes in the pipeline the unwanted relationship by different rules
|
||||||
|
import pandas as pd
|
||||||
|
import sqlite3 # kept for compatibility
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
|
||||||
|
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
|
||||||
|
|
||||||
|
|
||||||
|
class PipelineApplier:
|
||||||
|
def __init__(self):
|
||||||
|
# Fast internal caches for O(1) membership checks
|
||||||
|
self._MOVIE_FILTER_SET = set()
|
||||||
|
self._REL_FILTER_SET = set()
|
||||||
|
|
||||||
|
# ------------------------------
|
||||||
|
# Filters
|
||||||
|
# ------------------------------
|
||||||
|
def delete_relationship_by_str(self, RDF: pd.DataFrame, uri: str) -> pd.DataFrame:
|
||||||
|
# Vectorized boolean mask
|
||||||
|
return RDF.loc[RDF["RelationshipURI"] != uri]
|
||||||
|
|
||||||
|
def generate_frequency_movie_filter(self, MOVIE_COUNT: pd.DataFrame, min_threshold: int, max_threshold: int):
|
||||||
|
"""
|
||||||
|
You MUST call this before filter the dataset by movie frequency [filter_by_frequency_movie_id()],
|
||||||
|
since this method creates such filter.
|
||||||
|
Args:
|
||||||
|
MOVIE_COUNT (pd.DataFrame): ["MovieID","Count"]
|
||||||
|
"""
|
||||||
|
sel = (MOVIE_COUNT["Count"] >= min_threshold) & (MOVIE_COUNT["Count"] < max_threshold)
|
||||||
|
self._MOVIE_FILTER_SET = set(MOVIE_COUNT.loc[sel, "MovieID"].tolist())
|
||||||
|
|
||||||
|
def generate_frequency_relationship_filter(self, REL_COUNT: pd.DataFrame, min_threshold: int, max_threshold: int):
|
||||||
|
sel = (REL_COUNT["Count"] >= min_threshold) & (REL_COUNT["Count"] < max_threshold)
|
||||||
|
self._REL_FILTER_SET = set(REL_COUNT.loc[sel, "RelationshipURI"].tolist())
|
||||||
|
|
||||||
|
def filter_by_frequency_movie_id(self, RDF: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
# Set-backed isin is the fastest path
|
||||||
|
return RDF.loc[RDF["MovieID"].isin(self._MOVIE_FILTER_SET)]
|
||||||
|
|
||||||
|
def filter_by_frequency_relationship(self, RDF: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
return RDF.loc[RDF["RelationshipURI"].isin(self._REL_FILTER_SET)]
|
||||||
|
|
||||||
|
# ------------------------------
|
||||||
|
# Cleaning & preprocessing
|
||||||
|
# ------------------------------
|
||||||
|
def rdf_add_special_token(self, RDF: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
"""
|
||||||
|
Adds RDF special token to SubjectURI / RelationshipURI / ObjectURI.
|
||||||
|
Returns a new DataFrame (no inplace modification of the caller's object).
|
||||||
|
"""
|
||||||
|
subj = np.char.add(SpecialToken.SUBJECT.value, RDF["SubjectURI"].to_numpy(dtype=object))
|
||||||
|
rel = np.char.add(SpecialToken.RELATIONSHIP.value, RDF["RelationshipURI"].to_numpy(dtype=object))
|
||||||
|
obj = np.char.add(SpecialToken.OBJECT.value, RDF["ObjectURI"].to_numpy(dtype=object))
|
||||||
|
return RDF.assign(SubjectURI=subj, RelationshipURI=rel, ObjectURI=obj)
|
||||||
|
|
||||||
|
def drop_na_from_dataset(self, RDF: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
"""
|
||||||
|
Replace '' with NaN only on key columns, then drop rows missing any of them.
|
||||||
|
"""
|
||||||
|
cols = ["SubjectURI", "RelationshipURI", "ObjectURI"]
|
||||||
|
rdf = RDF.copy()
|
||||||
|
for c in cols:
|
||||||
|
m = rdf[c] == ""
|
||||||
|
if m.any():
|
||||||
|
rdf.loc[m, c] = np.nan
|
||||||
|
return rdf.dropna(subset=cols)
|
||||||
|
|
||||||
|
# ------------------------------
|
||||||
|
# Building triples
|
||||||
|
# ------------------------------
|
||||||
|
@staticmethod
|
||||||
|
def build_triple(RDF: pd.DataFrame):
|
||||||
|
"""
|
||||||
|
Obtains joined RDF triple in one element, together with START and END special token.
|
||||||
|
Returns:
|
||||||
|
pd.Series: RDF["Triple"] (just this column). Side-effect: sets RDF["Triple"].
|
||||||
|
"""
|
||||||
|
start = SpecialToken.START_TRIPLE.value
|
||||||
|
end = SpecialToken.END_TRIPLE.value
|
||||||
|
|
||||||
|
subj = RDF["SubjectURI"].to_numpy(dtype=object)
|
||||||
|
rel = RDF["RelationshipURI"].to_numpy(dtype=object)
|
||||||
|
obj = RDF["ObjectURI"].to_numpy(dtype=object)
|
||||||
|
|
||||||
|
arr = np.char.add(np.char.add(np.char.add(start, subj),
|
||||||
|
np.char.add(rel, obj)),
|
||||||
|
end)
|
||||||
|
RDF["Triple"] = pd.Series(arr, index=RDF.index, dtype=object, name="Triple")
|
||||||
|
return RDF["Triple"]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def build_incomplete_triple(RDF: pd.DataFrame):
|
||||||
|
"""
|
||||||
|
Helper used for the third task: "Predicting a masked component within an RDF triple".
|
||||||
|
Accepts any subset of ["SubjectURI","RelationshipURI","ObjectURI"] (typically 2 of 3).
|
||||||
|
Missing components are replaced by <MASK>.
|
||||||
|
Returns:
|
||||||
|
pd.Series: RDF["Triple"] (just this column). Side-effect: sets RDF["Triple"].
|
||||||
|
"""
|
||||||
|
start = SpecialToken.START_TRIPLE.value
|
||||||
|
end = SpecialToken.END_TRIPLE.value
|
||||||
|
maskv = SpecialToken.MASK.value
|
||||||
|
n = len(RDF.index)
|
||||||
|
|
||||||
|
subj = RDF["SubjectURI"].to_numpy(dtype=object) if "SubjectURI" in RDF else np.full(n, maskv, dtype=object)
|
||||||
|
rel = RDF["RelationshipURI"].to_numpy(dtype=object) if "RelationshipURI" in RDF else np.full(n, maskv, dtype=object)
|
||||||
|
obj = RDF["ObjectURI"].to_numpy(dtype=object) if "ObjectURI" in RDF else np.full(n, maskv, dtype=object)
|
||||||
|
|
||||||
|
arr = np.char.add(np.char.add(np.char.add(start, subj),
|
||||||
|
np.char.add(rel, obj)),
|
||||||
|
end)
|
||||||
|
RDF["Triple"] = pd.Series(arr, index=RDF.index, dtype=object, name="Triple")
|
||||||
|
return RDF["Triple"]
|
||||||
|
|
||||||
|
def rebuild_by_movie(self, RDF: pd.DataFrame):
|
||||||
|
"""
|
||||||
|
Collapse triples + abstract into a single row per movie.
|
||||||
|
Returns: ["MovieID","Triple","Abstract"]
|
||||||
|
"""
|
||||||
|
# Build triples once (vectorized); method also sets RDF["Triple"]
|
||||||
|
triples = self.build_triple(RDF)
|
||||||
|
|
||||||
|
# Minimal frame for grouping (avoid carrying extra columns)
|
||||||
|
tmp = pd.DataFrame({
|
||||||
|
"MovieID": RDF["MovieID"].to_numpy(),
|
||||||
|
"Abstract": RDF["Abstract"].to_numpy(),
|
||||||
|
"Triple": triples.to_numpy(),
|
||||||
|
})
|
||||||
|
|
||||||
|
# Factorize high-cardinality keys to fast integer codes, group on codes,
|
||||||
|
# then map back to labels; sum concatenates strings for object dtype.
|
||||||
|
mid_codes, mid_uniques = pd.factorize(tmp["MovieID"], sort=False)
|
||||||
|
abs_codes, abs_uniques = pd.factorize(tmp["Abstract"], sort=False)
|
||||||
|
|
||||||
|
tmp["_mid"] = mid_codes
|
||||||
|
tmp["_abs"] = abs_codes
|
||||||
|
|
||||||
|
grouped = tmp.groupby(["_mid", "_abs"], sort=False, as_index=False)["Triple"].sum()
|
||||||
|
|
||||||
|
grouped["MovieID"] = grouped["_mid"].map(lambda i: mid_uniques[i])
|
||||||
|
grouped["Abstract"] = grouped["_abs"].map(lambda i: abs_uniques[i])
|
||||||
|
|
||||||
|
# Final tokens
|
||||||
|
grouped["Triple"] = SpecialToken.START_TRIPLE_LIST.value + grouped["Triple"]
|
||||||
|
grouped["Abstract"] = SpecialToken.ABSTRACT.value + grouped["Abstract"]
|
||||||
|
|
||||||
|
return grouped[["MovieID", "Triple", "Abstract"]]
|
||||||
191
Scripts/DataCleaning/legacy/filter.py
Normal file
191
Scripts/DataCleaning/legacy/filter.py
Normal file
@@ -0,0 +1,191 @@
|
|||||||
|
# This file deletes in the pipeline the unwanted relationship by different rules
|
||||||
|
import pandas as pd
|
||||||
|
import sqlite3
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
|
||||||
|
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
|
||||||
|
|
||||||
|
|
||||||
|
class PipelineApplier():
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
|
||||||
|
self.MOVIE_FILTER = pd.DataFrame()
|
||||||
|
self.REL_FILTER = pd.DataFrame()
|
||||||
|
|
||||||
|
|
||||||
|
def delete_relationship_by_str(self, RDF: pd.DataFrame, uri: str) -> pd.DataFrame:
|
||||||
|
return RDF[RDF["RelationshipURI"]!= uri]
|
||||||
|
|
||||||
|
def generate_list_relationship_filter(self, filter_list: list[str]) -> None:
|
||||||
|
"""Store RelationshipURI filters as a set """
|
||||||
|
self.relationship_filter_list: set[str] = set(filter_list)
|
||||||
|
|
||||||
|
def delete_relationship_by_list_filter(self, RDF: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
"""Remove rows whose RelationshipURI is in the stored filter. Generate it first callig the generate_list_relationship_filter"""
|
||||||
|
return RDF[~RDF["RelationshipURI"].isin(self.relationship_filter_list)]
|
||||||
|
|
||||||
|
# def filter_movie_by_rel_uri_frequence()
|
||||||
|
|
||||||
|
def generate_frequency_movie_filter(self, MOVIE_COUNT: pd.DataFrame ,min_treshold: int, max_treshold: int):
|
||||||
|
"""
|
||||||
|
You MUST call this before filter the dataset by movie frequence [filter_by_frequence_movie_id()],
|
||||||
|
since this method creates such filter
|
||||||
|
Args:
|
||||||
|
MOVIE_COUNT (pd.DataFrame): ["MovieID","Count"]
|
||||||
|
min_treshold (int):
|
||||||
|
max_treshold (int):
|
||||||
|
"""
|
||||||
|
MOVIE_COUNT = MOVIE_COUNT[MOVIE_COUNT["Count"] >= min_treshold]
|
||||||
|
MOVIE_COUNT = MOVIE_COUNT[MOVIE_COUNT["Count"] < max_treshold]
|
||||||
|
self.MOVIE_FILTER = MOVIE_COUNT #["MovieID"]
|
||||||
|
|
||||||
|
def generate_frequency_relationship_filter(self, REL_COUNT: pd.DataFrame ,min_treshold: int, max_treshold: int):
|
||||||
|
REL_COUNT = REL_COUNT[REL_COUNT["Count"] >= min_treshold]
|
||||||
|
REL_COUNT = REL_COUNT[REL_COUNT["Count"] < max_treshold]
|
||||||
|
self.REL_FILTER = REL_COUNT #["RelationshipURI"]
|
||||||
|
|
||||||
|
def filter_by_frequency_movie_id(self, RDF: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
RDF = RDF[RDF["MovieID"].isin(self.MOVIE_FILTER["MovieID"])]
|
||||||
|
return RDF
|
||||||
|
|
||||||
|
def filter_by_frequency_relationship(self, RDF: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
RDF = RDF[RDF["RelationshipURI"].isin(self.REL_FILTER["RelationshipURI"])]
|
||||||
|
return RDF
|
||||||
|
|
||||||
|
def rdf_add_special_token(self, RDF: pd.DataFrame):
|
||||||
|
"""
|
||||||
|
Adds RDF special token to each element of the tuple. i.e: SUBJ to SubjectURI, OBJ to ObjectURI, REL to RelationshipURI.
|
||||||
|
Check Scrits/Libs/CleaningPipeline/special_token.py for the up-to-date special token.
|
||||||
|
It only adds the special token of the three element of the RDF, no other special token.
|
||||||
|
Args:
|
||||||
|
RDF (pd.DataFrame):
|
||||||
|
Returns:
|
||||||
|
pd.DataFrame: ["MovieURI","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
|
||||||
|
"""
|
||||||
|
# if the filter runned before sliced the RDF and created a View, here the problem is resolved
|
||||||
|
# for more context: SettingWithCopyWarning
|
||||||
|
RDF = RDF.copy()
|
||||||
|
# at the beginning of SubjectURI RelationshipURI ObjectURI, add their special token
|
||||||
|
RDF["SubjectURI"] = SpecialToken.SUBJECT.value + RDF["SubjectURI"]
|
||||||
|
RDF["ObjectURI"] = SpecialToken.OBJECT.value + RDF["ObjectURI"]
|
||||||
|
RDF["RelationshipURI"] = SpecialToken.RELATIONSHIP.value + RDF["RelationshipURI"]
|
||||||
|
return RDF
|
||||||
|
|
||||||
|
|
||||||
|
def drop_na_from_dataset(self, RDF: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
# dataset has SubjectURI RelationshipURI ObjectURI
|
||||||
|
# want to drop the '' in them
|
||||||
|
# Replace empty strings with NaN
|
||||||
|
RDF = RDF.replace('', np.nan)
|
||||||
|
# Drop rows where any of the key columns are NaN
|
||||||
|
RDF = RDF.dropna(subset=["SubjectURI", "RelationshipURI", "ObjectURI"])
|
||||||
|
return RDF
|
||||||
|
|
||||||
|
def rebuild_by_movie(self, RDF: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
"""_summary_
|
||||||
|
|
||||||
|
Args:
|
||||||
|
RDF (pd.DataFrame): ["MovieID","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
pd.DataFrame: ["MovieID","Triple","Abstract"]
|
||||||
|
"""
|
||||||
|
# to execute this method you have to have itereted by movie_id
|
||||||
|
# because as design we want at the end one row for each movie
|
||||||
|
# MovieID and abstract can be given as input for a more generic method
|
||||||
|
# movie_id = RDF["MovieID"].iloc(0)
|
||||||
|
# abstract = RDF["Abstract"].iloc(0)
|
||||||
|
# first let's combine each row creating column triple as join of rdf
|
||||||
|
RDF["Triple"] = RDF["SubjectURI"] + RDF["RelationshipURI"] + RDF["ObjectURI"]
|
||||||
|
# special token
|
||||||
|
RDF["Triple"] = SpecialToken.START_TRIPLE.value + RDF["Triple"] + SpecialToken.END_TRIPLE.value
|
||||||
|
# combine rows into one
|
||||||
|
# MovieID and Abstract are unique for each other 1 <-> 1
|
||||||
|
RDF = RDF.groupby(["MovieID", "Abstract"])["Triple"].apply("".join).reset_index()
|
||||||
|
# add special token for: start of triple, end of triple and start of abstract
|
||||||
|
RDF["Triple"] = SpecialToken.START_TRIPLE_LIST.value + RDF["Triple"]
|
||||||
|
RDF["Abstract"] = SpecialToken.ABSTRACT.value + RDF["Abstract"]
|
||||||
|
return RDF[["MovieID","Triple","Abstract"]]
|
||||||
|
|
||||||
|
def group_by_movie_from_triple(self, RDF: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
RDF (pd.DataFrame): ["MovieID","Triple","Abstract"]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
pd.DataFrame: ["MovieID","Triple","Abstract"]
|
||||||
|
"""
|
||||||
|
# combine rows into one
|
||||||
|
# MovieID and Abstract are unique for each other 1 <-> 1
|
||||||
|
RDF = RDF.groupby(["MovieID", "Abstract"])["Triple"].apply("".join).reset_index()
|
||||||
|
# add special token for: start of triple, end of triple and start of abstract
|
||||||
|
RDF["Triple"] = SpecialToken.START_TRIPLE_LIST.value + RDF["Triple"]
|
||||||
|
RDF["Abstract"] = SpecialToken.ABSTRACT.value + RDF["Abstract"]
|
||||||
|
return RDF[["MovieID","Triple","Abstract"]]
|
||||||
|
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def build_triple(RDF: pd.DataFrame):
|
||||||
|
"""
|
||||||
|
Obtains joined RDF triple in one element, togheter with START and END special token
|
||||||
|
Args:
|
||||||
|
RDF (pd.DataFrame): at least ["SubjectURI", "RelationshipURI", "ObjectURI"]
|
||||||
|
Returns:
|
||||||
|
pd.DataFrame: RDF["Triple"] (just this column)
|
||||||
|
"""
|
||||||
|
# let's combine each row creating column triple as join of rdf
|
||||||
|
RDF["Triple"] = RDF["SubjectURI"] + RDF["RelationshipURI"] + RDF["ObjectURI"]
|
||||||
|
# special token
|
||||||
|
RDF["Triple"] = SpecialToken.START_TRIPLE.value + RDF["Triple"] + SpecialToken.END_TRIPLE.value
|
||||||
|
return RDF["Triple"]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def build_incomplete_triple(RDF: pd.DataFrame):
|
||||||
|
"""
|
||||||
|
Method helper used for the third task: "Predicting a masked component within an RDF triple".
|
||||||
|
Obtains joined RDF triple in one element, togheter with START and END special token.
|
||||||
|
The MISSING element will be replaced by the special token <MASK>
|
||||||
|
Args:
|
||||||
|
RDF (pd.DataFrame): 2 of the following ["SubjectURI", "RelationshipURI", "ObjectURI"]
|
||||||
|
Returns:
|
||||||
|
RDF["Triple"]: pd.Series (just this column, NOT A DATAFRAME)
|
||||||
|
"""
|
||||||
|
# let's create a new column "Triple" with the joined RDF
|
||||||
|
|
||||||
|
# the following creates a column of MASK token of the lenght of the dataframe,
|
||||||
|
# it is not needed since we expect to have a dataframe of just one column, but its more robust (AND SLOW)
|
||||||
|
MISSING = pd.Series([SpecialToken.MASK.value] * len(RDF), index=RDF.index)
|
||||||
|
|
||||||
|
RDF["Triple"] = (
|
||||||
|
RDF.get("SubjectURI", MISSING) +
|
||||||
|
RDF.get("RelationshipURI", MISSING) +
|
||||||
|
RDF.get("ObjectURI", MISSING))
|
||||||
|
# special token
|
||||||
|
RDF["Triple"] = SpecialToken.START_TRIPLE.value + RDF["Triple"] + SpecialToken.END_TRIPLE.value
|
||||||
|
return RDF["Triple"]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def build_for_mask_task(RDF_incomplete: pd.DataFrame, MISSING: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
# currently not used
|
||||||
|
"""
|
||||||
|
Method helper used for the third task: "Predicting a masked component within an RDF triple".
|
||||||
|
Given two Dataframe, the first containing the incompleted RDF and the other only the missing componment,
|
||||||
|
this methods applies the special token
|
||||||
|
Args:
|
||||||
|
RDF (pd.DataFrame): _description_
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
pd.DataFrame: _description_
|
||||||
|
"""
|
||||||
|
# take an example dataframe as ["SubjectURI",""]
|
||||||
|
# as input two dataframe, one with 2 column
|
||||||
|
return None
|
||||||
|
|
||||||
|
def regex_on_objects(self, RDF: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
RDF["ObjectURI"] = (RDF["ObjectURI"].astype("string")
|
||||||
|
.str.replace(r"\r?\n+", ", ", regex=True) # newlines -> ", "
|
||||||
|
.str.replace(r"\*", "", regex=True)) # delete all asterisks
|
||||||
|
|
||||||
|
return RDF
|
||||||
145
Scripts/DataCleaning/legacy/pipeline.py
Normal file
145
Scripts/DataCleaning/legacy/pipeline.py
Normal file
@@ -0,0 +1,145 @@
|
|||||||
|
import re
|
||||||
|
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
|
||||||
|
from Scripts.DataCleaning.legacy.filter import PipelineApplier
|
||||||
|
# tasks dataset builder
|
||||||
|
from Scripts.DataCleaning.data_output_models.rdf_mask_task import RDF_mask_task_dataset
|
||||||
|
from Scripts.DataCleaning.data_output_models.bpe_corpus import BPE_corpus
|
||||||
|
from Scripts.DataCleaning.data_output_models.rdf_text_tasks import RDF_text_task_dataset
|
||||||
|
from Scripts.DataCleaning.data_output_models.rdf_completation_task import RDF_completation_task_dataset
|
||||||
|
from Scripts.DataCleaning.data_output_models.debug_csv import Debug_csv
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
class Pipeline():
|
||||||
|
def __init__(self):
|
||||||
|
self.sql_endpoint = SqlEndpoint()
|
||||||
|
# classes to manage taskes' datasets
|
||||||
|
self.task_rdf_mask = RDF_mask_task_dataset("./Assets/Dataset/Tmp/rdf_mask.csv")
|
||||||
|
self.task_bpe_corpus = BPE_corpus("./Assets/Dataset/Tmp/corpus.txt")
|
||||||
|
self.task_rdf_text = RDF_text_task_dataset("./Assets/Dataset/Tmp/rdf_text.csv")
|
||||||
|
self.task_rdf_completation = RDF_completation_task_dataset("./Assets/Dataset/Tmp/rdf_completation.csv")
|
||||||
|
|
||||||
|
# prepare the filter
|
||||||
|
# the filter applier needs to know the frequence of Movies and Relationship among all the Dataset
|
||||||
|
self.filter_applier = PipelineApplier()
|
||||||
|
MOVIE_COUNT = self.sql_endpoint.get_movies_id_count()
|
||||||
|
REL_COUNT = self.sql_endpoint.get_relationship_count()
|
||||||
|
self.filter_applier.generate_frequency_movie_filter(MOVIE_COUNT,50,3000)
|
||||||
|
self.filter_applier.generate_frequency_relationship_filter(REL_COUNT, 50, 2395627) # from 2718 to 3069
|
||||||
|
# prepare the filter on the relationshipURI you want to delete:
|
||||||
|
relationship_uri_banned_list = [
|
||||||
|
"dbp-dbp:wikiPageUsesTemplate","w3:2000/01/rdf-schema#label","dbp-dbo:abstract",
|
||||||
|
"dbp-dbo:wikiPageID","dbp-dbo:wikiPageRevisionID", "dbp-dbo:wikiPageDisambiguates",
|
||||||
|
"w3:2002/07/owl#sameAs","dbp-dbp:image","dbp-dbo:wikiPageLength", "w3:2000/01/rdf-schema#comment",
|
||||||
|
"dbp-dbo:thumbnail", "foaf:depiction", "w3:1999/02/22-rdf-syntax-ns#type",
|
||||||
|
"dbp-dbp:id","dbp-dbp:totalWidth", "w3:ns/prov#wasDerivedFrom", "dbp-dbp:n", "dbp-dbp:alt",
|
||||||
|
"dbp-dbo:soundRecording"
|
||||||
|
]
|
||||||
|
self.filter_applier.generate_list_relationship_filter(relationship_uri_banned_list)
|
||||||
|
|
||||||
|
|
||||||
|
def execute_task_bpe_corpus(self):
|
||||||
|
for RDF in self._get_cleaned_movie_rows():
|
||||||
|
RDF = self.filter_applier.rebuild_by_movie(RDF)
|
||||||
|
RDF = RDF[["Triple","Abstract"]]
|
||||||
|
self.task_bpe_corpus.write_from_df(RDF)
|
||||||
|
self._end_file_handler()
|
||||||
|
|
||||||
|
|
||||||
|
def execute_task_rdf_mask(self):
|
||||||
|
for RDF in self._get_cleaned_movie_rows():
|
||||||
|
self.task_rdf_mask.write(RDF)
|
||||||
|
self._end_file_handler()
|
||||||
|
|
||||||
|
|
||||||
|
def execute_tasks_rdf_text(self):
|
||||||
|
for RDF in self._get_cleaned_movie_rows():
|
||||||
|
RDF = self.filter_applier.rebuild_by_movie(RDF)
|
||||||
|
self.task_rdf_text.write(RDF)
|
||||||
|
self._end_file_handler()
|
||||||
|
|
||||||
|
|
||||||
|
def execute_task_rdf_completation(self):
|
||||||
|
for RDF in self._get_cleaned_movie_rows():
|
||||||
|
RDF["Triple"] = self.filter_applier.build_triple(RDF)
|
||||||
|
self.task_rdf_completation.write(RDF[["MovieID","Triple"]])
|
||||||
|
self._end_file_handler()
|
||||||
|
|
||||||
|
|
||||||
|
def execute_all_task(self):
|
||||||
|
for RDF in self._get_cleaned_movie_rows():
|
||||||
|
self.task_rdf_mask.write(RDF)
|
||||||
|
|
||||||
|
RDF["Triple"] = self.filter_applier.build_triple(RDF)
|
||||||
|
self.task_rdf_completation.write(RDF[["MovieID","Triple"]])
|
||||||
|
|
||||||
|
RDF = self.filter_applier.group_by_movie_from_triple(RDF[["MovieID","Triple","Abstract"]])
|
||||||
|
|
||||||
|
self.task_rdf_text.write(RDF)
|
||||||
|
self.task_bpe_corpus.write_from_df(RDF[["Triple","Abstract"]])
|
||||||
|
|
||||||
|
self._end_file_handler()
|
||||||
|
|
||||||
|
|
||||||
|
def _end_file_handler(self):
|
||||||
|
self.task_bpe_corpus.close()
|
||||||
|
self.task_rdf_mask.close()
|
||||||
|
self.task_rdf_text.close()
|
||||||
|
self.task_rdf_completation.close()
|
||||||
|
|
||||||
|
|
||||||
|
def _get_cleaned_movie_rows(self):
|
||||||
|
for RDF in self.sql_endpoint.get_abbreviated_dataset_by_movie_id():
|
||||||
|
RDF = self.filter_applier.drop_na_from_dataset(RDF)
|
||||||
|
RDF = self.filter_applier.filter_by_frequency_movie_id(RDF)
|
||||||
|
RDF = self.filter_applier.filter_by_frequency_relationship(RDF)
|
||||||
|
# other filter
|
||||||
|
#
|
||||||
|
RDF = self.filter_applier.delete_relationship_by_list_filter(RDF)
|
||||||
|
# regex on ObjectURI
|
||||||
|
RDF = self.filter_applier.regex_on_objects(RDF)
|
||||||
|
if RDF.empty:
|
||||||
|
continue
|
||||||
|
RDF = self.filter_applier.rdf_add_special_token(RDF) # WARNING, THIS MUST BE DONE AFTER FILTER BY FREQUENCE
|
||||||
|
yield RDF
|
||||||
|
|
||||||
|
|
||||||
|
def use_toy_dataset(self):
|
||||||
|
# CHOOSEN MOVIE:
|
||||||
|
# The Dark Knight : 117248
|
||||||
|
# Inception : 147074
|
||||||
|
# The Avengers : 113621
|
||||||
|
# Cast Away : 1123
|
||||||
|
# The Departed : 117586
|
||||||
|
# American Psycho : 90177
|
||||||
|
# Avatar : 71587
|
||||||
|
# Django Unchained : 138952
|
||||||
|
# Spirited Away : 144137
|
||||||
|
# Knives Out : 148025
|
||||||
|
movie_list = [117248, 147074, 113621, 1123, 117586, 90177, 71587, 138952, 144137, 148025]
|
||||||
|
self.sql_endpoint.movie_ids = movie_list
|
||||||
|
|
||||||
|
def generate_csv_debug_file(self, debug_path:str):
|
||||||
|
debug_csv = Debug_csv(debug_path)
|
||||||
|
|
||||||
|
for RDF in self._get_cleaned_movie_rows():
|
||||||
|
debug_csv.write(RDF)
|
||||||
|
|
||||||
|
debug_csv.close()
|
||||||
|
|
||||||
|
|
||||||
|
# there are a lot of settings to manage
|
||||||
|
# you only need to change settings:
|
||||||
|
# in the init for file paths, frequency filter limit, banned reletionshipURI
|
||||||
|
# in the use_toy_dataset , to change the toy dataset
|
||||||
|
# in _get_cleaned_movie_rows: to change how the pipeline behave
|
||||||
|
|
||||||
|
pipeline = Pipeline()
|
||||||
|
|
||||||
|
pipeline.use_toy_dataset()
|
||||||
|
# pipeline.execute_task_bpe_corpus()
|
||||||
|
# pipeline.execute_task_rdf_mask()
|
||||||
|
# pipeline.execute_tasks_rdf_text()
|
||||||
|
# pipeline.execute_task_rdf_completation()
|
||||||
|
# pipeline.execute_all_task()
|
||||||
|
pipeline.generate_csv_debug_file("Assets/Dataset/Tmp/debug.csv")
|
||||||
@@ -101,7 +101,6 @@ def tree_like(file: str, csv_uri_header:str, out: str):
|
|||||||
|
|
||||||
FILE = open(file, "r", encoding="utf-8")
|
FILE = open(file, "r", encoding="utf-8")
|
||||||
|
|
||||||
# TODO: Change here so it takes single URI from a CSV file
|
|
||||||
# It is needed the header-name
|
# It is needed the header-name
|
||||||
for row in csv.DictReader(FILE):
|
for row in csv.DictReader(FILE):
|
||||||
|
|
||||||
|
|||||||
86
Scripts/DataCleaning/pipeline/cleaner.py
Normal file
86
Scripts/DataCleaning/pipeline/cleaner.py
Normal file
@@ -0,0 +1,86 @@
|
|||||||
|
# This file deletes in the pipeline the unwanted relationship by different rules
|
||||||
|
import pandas as pd
|
||||||
|
import sqlite3
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
|
||||||
|
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
|
||||||
|
|
||||||
|
|
||||||
|
class PipelineApplier():
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def rdf_add_special_token(self, RDF: pd.DataFrame):
|
||||||
|
"""
|
||||||
|
Adds RDF special token to each element of the tuple. i.e: SUBJ to SubjectURI, OBJ to ObjectURI, REL to RelationshipURI.
|
||||||
|
Check Scrits/Libs/CleaningPipeline/special_token.py for the up-to-date special token.
|
||||||
|
It only adds the special token of the three element of the RDF, no other special token.
|
||||||
|
Args:
|
||||||
|
RDF (pd.DataFrame):
|
||||||
|
Returns:
|
||||||
|
pd.DataFrame: ["MovieURI","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
|
||||||
|
"""
|
||||||
|
# if the filter runned before sliced the RDF and created a View, here the problem is resolved
|
||||||
|
# for more context: SettingWithCopyWarning
|
||||||
|
RDF = RDF.copy()
|
||||||
|
# at the beginning of SubjectURI RelationshipURI ObjectURI, add their special token
|
||||||
|
RDF["SubjectURI"] = SpecialToken.SUBJECT.value + RDF["SubjectURI"]
|
||||||
|
RDF["ObjectURI"] = SpecialToken.OBJECT.value + RDF["ObjectURI"]
|
||||||
|
RDF["RelationshipURI"] = SpecialToken.RELATIONSHIP.value + RDF["RelationshipURI"]
|
||||||
|
return RDF
|
||||||
|
|
||||||
|
|
||||||
|
def drop_na_from_dataset(self, RDF: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
RDF = RDF.replace('', np.nan)
|
||||||
|
# Drop rows where any of the key columns are NaN
|
||||||
|
RDF = RDF.dropna(subset=["SubjectURI", "RelationshipURI", "ObjectURI"])
|
||||||
|
return RDF
|
||||||
|
|
||||||
|
def rebuild_by_movie(self, RDF: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
RDF (pd.DataFrame): ["MovieID","SubjectURI","RelationshipURI","ObjectURI","Abstract"]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
pd.DataFrame: ["MovieID","Triple","Abstract"]
|
||||||
|
"""
|
||||||
|
# to execute this method you have to have itereted by movie_id
|
||||||
|
# because as design we want at the end one row for each movie
|
||||||
|
# MovieID and abstract can be given as input for a more generic method
|
||||||
|
# first let's combine each row creating column triple as join of rdf
|
||||||
|
RDF["Triple"] = RDF["SubjectURI"] + RDF["RelationshipURI"] + RDF["ObjectURI"]
|
||||||
|
# special token
|
||||||
|
RDF["Triple"] = SpecialToken.START_TRIPLE.value + RDF["Triple"] + SpecialToken.END_TRIPLE.value
|
||||||
|
# combine rows into one
|
||||||
|
# MovieID and Abstract are unique for each other 1 <-> 1
|
||||||
|
RDF = RDF.groupby(["MovieID", "Abstract"])["Triple"].apply("".join).reset_index()
|
||||||
|
# add special token for: start of triple, end of triple and start of abstract
|
||||||
|
RDF["Triple"] = SpecialToken.START_TRIPLE_LIST.value + RDF["Triple"]+SpecialToken.END_OF_SENTENCE.value
|
||||||
|
RDF["Abstract"] = SpecialToken.ABSTRACT.value + RDF["Abstract"] + SpecialToken.END_OF_SENTENCE.value
|
||||||
|
return RDF[["MovieID","Triple","Abstract"]]
|
||||||
|
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def build_triple(RDF: pd.DataFrame):
|
||||||
|
"""
|
||||||
|
Obtains joined RDF triple in one element, togheter with START and END special token
|
||||||
|
Args:
|
||||||
|
RDF (pd.DataFrame): at least ["SubjectURI", "RelationshipURI", "ObjectURI"]
|
||||||
|
Returns:
|
||||||
|
pd.DataFrame: RDF["Triple"] (just this column)
|
||||||
|
"""
|
||||||
|
# let's combine each row creating column triple as join of rdf
|
||||||
|
RDF["Triple"] = RDF["SubjectURI"] + RDF["RelationshipURI"] + RDF["ObjectURI"]
|
||||||
|
# special token
|
||||||
|
RDF["Triple"] = SpecialToken.START_TRIPLE.value + RDF["Triple"] + SpecialToken.END_TRIPLE.value
|
||||||
|
return RDF["Triple"]
|
||||||
|
|
||||||
|
|
||||||
|
def regex_on_objects(self, RDF: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
RDF["ObjectURI"] = (RDF["ObjectURI"].astype("string")
|
||||||
|
.str.replace(r"\r?\n+", ", ", regex=True) # newlines -> ", "
|
||||||
|
.str.replace(r"\*", "", regex=True)) # delete all asterisks
|
||||||
|
|
||||||
|
return RDF
|
||||||
103
Scripts/DataCleaning/pipeline/movie_filter.py
Normal file
103
Scripts/DataCleaning/pipeline/movie_filter.py
Normal file
@@ -0,0 +1,103 @@
|
|||||||
|
import pandas as pd
|
||||||
|
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
|
||||||
|
|
||||||
|
class MovieFilter:
|
||||||
|
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self.sql_endpoint = SqlEndpoint()
|
||||||
|
# first obtain all movie_id
|
||||||
|
movie_query = "SELECT MovieID FROM Movies"
|
||||||
|
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(movie_query)
|
||||||
|
|
||||||
|
|
||||||
|
def frequency_filter(self, min_treshold:int, max_treshold:int):
|
||||||
|
movie_list_placeholder = ",".join(["?"] * len(self.MOVIE_FILTER))
|
||||||
|
|
||||||
|
filter_query = f"""
|
||||||
|
SELECT MovieID
|
||||||
|
FROM RDFs
|
||||||
|
WHERE MovieID IN ({movie_list_placeholder})
|
||||||
|
GROUP BY MovieID
|
||||||
|
HAVING COUNT(*) BETWEEN {min_treshold} AND {max_treshold};
|
||||||
|
"""
|
||||||
|
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, tuple(self.MOVIE_FILTER["MovieID"].to_list()))
|
||||||
|
|
||||||
|
|
||||||
|
def get_movie_id(self):
|
||||||
|
return self.MOVIE_FILTER
|
||||||
|
|
||||||
|
|
||||||
|
def relation_filter(self, parsed_rel_uri: str, min_treshold:int, max_treshold:int):
|
||||||
|
movie_ids = self.MOVIE_FILTER["MovieID"].to_list()
|
||||||
|
movie_list_placeholder = ",".join(["?"] * len(movie_ids))
|
||||||
|
|
||||||
|
filter_query = f"""
|
||||||
|
SELECT MovieID
|
||||||
|
FROM RDFs
|
||||||
|
JOIN ParsedRelationships ON ParsedRelationships.RelationshipID = RDFs.RelationshipID
|
||||||
|
WHERE MovieID IN ({movie_list_placeholder})
|
||||||
|
GROUP BY MovieID
|
||||||
|
HAVING SUM(CASE WHEN ParsedRelationships.RelationshipURI = '{parsed_rel_uri}' THEN 1 ELSE 0 END)
|
||||||
|
BETWEEN {min_treshold} AND {max_treshold};
|
||||||
|
"""
|
||||||
|
|
||||||
|
params = tuple(movie_ids) # + (parsed_rel_uri, min_treshold, max_treshold)
|
||||||
|
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, params)
|
||||||
|
|
||||||
|
|
||||||
|
def filter_by_director(self):
|
||||||
|
director_list = ['dbp-dbo:director','dbp-dbp:director']
|
||||||
|
|
||||||
|
movie_ids = self.MOVIE_FILTER["MovieID"].to_list()
|
||||||
|
movie_list_placeholder = ",".join(["?"] * len(movie_ids))
|
||||||
|
|
||||||
|
filter_query = f"""
|
||||||
|
SELECT DISTINCT RDFs.MovieID
|
||||||
|
FROM RDFs
|
||||||
|
JOIN ParsedRelationships USING (RelationshipID)
|
||||||
|
WHERE RDFs.MovieID IN ({movie_list_placeholder})
|
||||||
|
AND ParsedRelationships.RelationshipURI IN {tuple(director_list)};
|
||||||
|
"""
|
||||||
|
|
||||||
|
params = tuple(movie_ids)
|
||||||
|
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, params)
|
||||||
|
|
||||||
|
|
||||||
|
def filter_by_english_movies(self):
|
||||||
|
movie_ids = self.MOVIE_FILTER["MovieID"].to_list()
|
||||||
|
movie_list_placeholder = ",".join(["?"] * len(movie_ids))
|
||||||
|
|
||||||
|
relationship = ["dbp-dbp:language"]
|
||||||
|
objects_list = ["English", "dbp-dbr:English_language"]
|
||||||
|
|
||||||
|
filter_query = f"""
|
||||||
|
SELECT DISTINCT RDFs.MovieID
|
||||||
|
FROM RDFs
|
||||||
|
INNER JOIN ParsedRelationships USING (RelationshipID)
|
||||||
|
INNER JOIN ParsedObjects USING (ObjectID)
|
||||||
|
WHERE RDFs.MovieID IN ({movie_list_placeholder})
|
||||||
|
AND ParsedRelationships.RelationshipURI IN ('{relationship[0]}')
|
||||||
|
AND ParsedObjects.ObjectURI in {tuple(objects_list)};
|
||||||
|
"""
|
||||||
|
|
||||||
|
other_query = f"""
|
||||||
|
SELECT RDFs.MovieID
|
||||||
|
FROM RDFs
|
||||||
|
INNER JOIN ParsedRelationships USING (RelationshipID)
|
||||||
|
INNER JOIN ParsedObjects USING (ObjectID)
|
||||||
|
WHERE RDFs.MovieID IN ({movie_list_placeholder})
|
||||||
|
AND ParsedRelationships.RelationshipURI IN ('{relationship[0]}')
|
||||||
|
GROUP BY RDFs.MovieID
|
||||||
|
HAVING
|
||||||
|
SUM(CASE WHEN ParsedObjects.ObjectURI IN {tuple(objects_list)} THEN 1 ELSE 0 END) >= 1
|
||||||
|
AND
|
||||||
|
SUM(CASE WHEN ParsedObjects.ObjectURI NOT IN {tuple(objects_list)} THEN 1 ELSE 0 END) = 0;
|
||||||
|
"""
|
||||||
|
|
||||||
|
params = tuple(movie_ids)
|
||||||
|
self.MOVIE_FILTER = self.sql_endpoint.get_dataframe_from_query(other_query, params)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# movie_filter = MovieFilter()
|
||||||
|
# movie_filter.frequency_filter(5,10)
|
||||||
155
Scripts/DataCleaning/pipeline/pipeline.py
Normal file
155
Scripts/DataCleaning/pipeline/pipeline.py
Normal file
@@ -0,0 +1,155 @@
|
|||||||
|
from movie_filter import MovieFilter
|
||||||
|
from relationship_filter import RelationshipFilter
|
||||||
|
from rdf_filter import RdfFilter
|
||||||
|
from cleaner import PipelineApplier
|
||||||
|
|
||||||
|
from Scripts.DataCleaning.data_output_models.bpe_corpus import BPE_corpus
|
||||||
|
from Scripts.DataCleaning.data_output_models.rdf_text_tasks import RDF_text_task_dataset
|
||||||
|
from Scripts.DataCleaning.data_output_models.rdf_completation_task import RDF_completation_task_dataset
|
||||||
|
from Scripts.DataCleaning.data_output_models.debug_csv import Debug_csv
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
RELATIONSHIP_FILTER_LIST = [
|
||||||
|
"dbp-dbp:wikiPageUsesTemplate","w3:2000/01/rdf-schema#label","dbp-dbo:abstract",
|
||||||
|
"dbp-dbo:wikiPageID","dbp-dbo:wikiPageRevisionID", "dbp-dbo:wikiPageDisambiguates",
|
||||||
|
"w3:2002/07/owl#sameAs","dbp-dbp:image","dbp-dbo:wikiPageLength", "w3:2000/01/rdf-schema#comment",
|
||||||
|
"dbp-dbo:thumbnail", "foaf:depiction", "w3:1999/02/22-rdf-syntax-ns#type",
|
||||||
|
"dbp-dbp:id","dbp-dbp:totalWidth", "w3:ns/prov#wasDerivedFrom", "dbp-dbp:n", "dbp-dbp:alt",
|
||||||
|
"dbp-dbo:soundRecording", "dbp-dbp:align", "dbp-dbp:format",
|
||||||
|
"dbp-dbp:filename", "dbp-dbp:wikt", "foaf:isPrimaryTopicOf", "dbp-dbp:quote", "foaf:homepage",
|
||||||
|
"dbp-dbp:wordnet_type", "dbp-dbp:length","dbp-dbp:caption", "dbp-dbo:imdbId", "dbp-dbp:border", "dbp-dbp:note",
|
||||||
|
"dbp-dbp:postalCodeType", "dbp-dbp:extraColumn", "foaf:homepage", "dbp-dbp:bgcolor","dbp-dbp:prevTitle",
|
||||||
|
"dbp-dbp:imageUpright", "dbp-dbp:url", "dbp-dbp:italicTitle", "dbp-dbp:imageSize", "dbp-dbp:text",
|
||||||
|
"dbp-dbp:captionAlign", "dbp-dbp:headerAlign", "dbp-dbp:height", "dbp-dbp:link", "dbp-dbo:wikiPageInterLanguageLink",
|
||||||
|
"w3:2003/01/geo/wgs84_pos#lat", "w3:2003/01/geo/wgs84_pos#long", "http://www.georss.org/georss/point",
|
||||||
|
"dbp-dbp:bgcolor", "dbp-dbp:mc", "dbp-dbp:rev3score", "dbp-dbp:rev4score", "dbp-dbp:imageAlt",
|
||||||
|
"dbp-dbp:b", "dbp-dbp:s", "dbp-dbp:c", "dbp-dbp:d", "dbp-dbp:m", "dbp-dbp:v", "dbp-dbp:mw", "dbp-dbp:fontsize",
|
||||||
|
"dbp-dbp:salign", "dbp-dbp:q", "dbp-dbp:portal", "dbp-dbp:dSearch", "dbp-dbp:header", "w3:2003/01/geo/wgs84_pos#geometry",
|
||||||
|
"dbp-dbp:shortsummary", "dbp-dbp:fixAttempted", "dbp-dbo:developer", "dbp-dbp:no", "dbp-dbp:ref", "dbp-dbp:infoa"
|
||||||
|
"dbp-dbp:infob", "dbp-dbp:1a", "dbp-dbp:1p", "dbp-dbp:2a", "dbp-dbp:2p", "http://rdvocab.info/RDARelationshipsWEMI/manifestationOfWork",
|
||||||
|
"dbp-dbp:isbn", "dbp-dbp:titleWidth", "dbp-dbp:prodcode", "dbp-dbp:page", "w3:2004/02/skos/core#closeMatch",
|
||||||
|
"dbp-dbp:colwidth", "dbp-dbp:imagesize", "dbp-dbp:rr", "dbp-dbp:date", "dbp-dbp:type", "dbp-dbp:list",
|
||||||
|
"dbp-dbp:listEpisodes", "dbp-dbp:footerAlign", "dbp-dbp:float", "dbp-dbp:bot", "dbp-dbp:p", "dbp-dbp:l", "dbp-dbp:t", "dbp-dbp:j",
|
||||||
|
"dbp-dbp:1y", "dbp-dbp:2y", "dbp-dbp:1pp", "dbp-dbp:vgs", "dbp-dbp:3a", "dbp-dbp:3p", "dbp-dbp:3y", "dbp-dbp:4a", "dbp-dbp:4y",
|
||||||
|
"dbp-dbp:website"
|
||||||
|
]
|
||||||
|
|
||||||
|
RELATIONSHIP_WHITE_LIST = [
|
||||||
|
"dbp-dbp:director","dbp-dbo:starring", "dbp-dbo:writer", "dbp-dbp:name", "dbp-dbp:genre", "purl:dc/terms/subject"
|
||||||
|
]
|
||||||
|
"""
|
||||||
|
SELECT DISTINCT field3
|
||||||
|
FROM debug
|
||||||
|
"""
|
||||||
|
|
||||||
|
class Pipeline():
|
||||||
|
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self._movie_filter = MovieFilter()
|
||||||
|
self._relationship_filter = RelationshipFilter()
|
||||||
|
self._rdf_filter = RdfFilter()
|
||||||
|
self._pipeline = PipelineApplier()
|
||||||
|
|
||||||
|
self.task_bpe_corpus = BPE_corpus("./Assets/Dataset/Tmp/corpus.txt")
|
||||||
|
self.task_rdf_text = RDF_text_task_dataset("./Assets/Dataset/Tmp/rdf_text.csv")
|
||||||
|
self.task_rdf_completation = RDF_completation_task_dataset("./Assets/Dataset/Tmp/rdf_completation.csv")
|
||||||
|
|
||||||
|
self._movie_filter.frequency_filter(50,3000)
|
||||||
|
self._relationship_filter.frequency_filter(25, 2395627) # from 2718 to 3069
|
||||||
|
self._relationship_filter.delete_relationship_uri_by_list(RELATIONSHIP_FILTER_LIST)
|
||||||
|
|
||||||
|
def other_filter(self):
|
||||||
|
self._movie_filter.relation_filter("purl:dc/terms/subject",5,100)
|
||||||
|
self._movie_filter.filter_by_director()
|
||||||
|
self._movie_filter.filter_by_english_movies()
|
||||||
|
self._movie_filter.relation_filter("dbp-dbp:budget",1,100) # the most important film have relationship budget
|
||||||
|
self._movie_filter.relation_filter("dbp-dbp:released",1,100) # to cut to 2000 :(
|
||||||
|
|
||||||
|
def _get_cleaned_movie_rows(self):
|
||||||
|
movie_ids = self._movie_filter.get_movie_id()
|
||||||
|
rel_ids = self._relationship_filter.get_relationship_id()
|
||||||
|
# rel_ids = self._relationship_filter.get_relationship_id_from_white_list(RELATIONSHIP_WHITE_LIST)
|
||||||
|
|
||||||
|
for RDF in self._rdf_filter.yield_movie_abbreviated_rdfs(movie_ids,rel_ids):
|
||||||
|
RDF = self._pipeline.drop_na_from_dataset(RDF)
|
||||||
|
RDF = self._pipeline.regex_on_objects(RDF)
|
||||||
|
RDF = self._pipeline.rdf_add_special_token(RDF)
|
||||||
|
|
||||||
|
if RDF.empty:
|
||||||
|
continue
|
||||||
|
yield RDF
|
||||||
|
|
||||||
|
|
||||||
|
def execute_task_bpe_corpus(self):
|
||||||
|
for RDF in self._get_cleaned_movie_rows():
|
||||||
|
RDF = self._pipeline.rebuild_by_movie(RDF)
|
||||||
|
RDF = RDF[["Triple","Abstract"]]
|
||||||
|
self.task_bpe_corpus.write_from_df(RDF)
|
||||||
|
self._end_file_handler()
|
||||||
|
|
||||||
|
|
||||||
|
def execute_tasks_rdf_text(self):
|
||||||
|
for RDF in self._get_cleaned_movie_rows():
|
||||||
|
RDF = self._pipeline.rebuild_by_movie(RDF)
|
||||||
|
self.task_rdf_text.write(RDF)
|
||||||
|
self._end_file_handler()
|
||||||
|
|
||||||
|
|
||||||
|
def execute_task_rdf_completation(self):
|
||||||
|
for RDF in self._get_cleaned_movie_rows():
|
||||||
|
RDF["Triple"] = self._pipeline.build_triple(RDF)
|
||||||
|
self.task_rdf_completation.write(RDF[["MovieID","Triple"]])
|
||||||
|
self._end_file_handler()
|
||||||
|
|
||||||
|
|
||||||
|
def _end_file_handler(self):
|
||||||
|
self.task_bpe_corpus.close()
|
||||||
|
self.task_rdf_text.close()
|
||||||
|
self.task_rdf_completation.close()
|
||||||
|
|
||||||
|
|
||||||
|
def execute_all_task(self):
|
||||||
|
for RDF in self._get_cleaned_movie_rows():
|
||||||
|
completation_RDF = RDF.copy()
|
||||||
|
completation_RDF["Triple"] = self._pipeline.build_triple(completation_RDF)
|
||||||
|
self.task_rdf_completation.write(completation_RDF[["MovieID","Triple"]])
|
||||||
|
|
||||||
|
RDF = self._pipeline.rebuild_by_movie(RDF)
|
||||||
|
|
||||||
|
self.task_rdf_text.write(RDF)
|
||||||
|
self.task_bpe_corpus.write_from_df(RDF[["Triple","Abstract"]])
|
||||||
|
|
||||||
|
self._end_file_handler()
|
||||||
|
|
||||||
|
|
||||||
|
def use_toy_dataset(self):
|
||||||
|
# CHOOSEN MOVIE:
|
||||||
|
# The Dark Knight : 117248
|
||||||
|
# Inception : 147074
|
||||||
|
# The Avengers : 113621
|
||||||
|
# Cast Away : 1123
|
||||||
|
# The Departed : 117586
|
||||||
|
# American Psycho : 90177
|
||||||
|
# Avatar : 71587
|
||||||
|
# Django Unchained : 138952
|
||||||
|
# Spirited Away : 144137
|
||||||
|
# Knives Out : 148025
|
||||||
|
# [106465,106466,106467,106468,106469,106470,106471,106472,106473]
|
||||||
|
movie_list = [117248, 147074, 113621, 1123, 117586, 90177, 71587, 138952, 144137, 148025]
|
||||||
|
self._movie_filter.MOVIE_FILTER = pd.DataFrame({"MovieID": movie_list})
|
||||||
|
|
||||||
|
def generate_csv_debug_file(self, debug_path:str):
|
||||||
|
debug_csv = Debug_csv(debug_path)
|
||||||
|
|
||||||
|
for RDF in self._get_cleaned_movie_rows():
|
||||||
|
debug_csv.write(RDF)
|
||||||
|
|
||||||
|
debug_csv.close()
|
||||||
|
|
||||||
|
|
||||||
|
pipe = Pipeline()
|
||||||
|
#pipe.use_toy_dataset()
|
||||||
|
pipe.other_filter()
|
||||||
|
# pipe.execute_all_task()
|
||||||
|
pipe.generate_csv_debug_file("Assets/Dataset/Tmp/debug.csv")
|
||||||
32
Scripts/DataCleaning/pipeline/rdf_filter.py
Normal file
32
Scripts/DataCleaning/pipeline/rdf_filter.py
Normal file
@@ -0,0 +1,32 @@
|
|||||||
|
import pandas as pd
|
||||||
|
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
|
||||||
|
|
||||||
|
class RdfFilter:
|
||||||
|
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self.sql_endpoint = SqlEndpoint()
|
||||||
|
|
||||||
|
|
||||||
|
# def delete_hyperum_when_movie(self):
|
||||||
|
# purl:linguistics/gold/hypernym
|
||||||
|
# is almost ever as "dbp-dbr:Movie" or "dbp-dbr:Film"
|
||||||
|
# banned triple
|
||||||
|
|
||||||
|
def yield_movie_abbreviated_rdfs(self, MOVIE_ID: pd.DataFrame, REL_ID: pd.DataFrame):
|
||||||
|
relationship_placeholder = ",".join(["?"] * len(REL_ID))
|
||||||
|
|
||||||
|
param = tuple(REL_ID["RelationshipID"].to_list())
|
||||||
|
|
||||||
|
QUERY = f"""
|
||||||
|
SELECT MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
|
||||||
|
FROM RDFs
|
||||||
|
INNER JOIN ParsedSubjects USING (SubjectID)
|
||||||
|
INNER JOIN ParsedRelationships USING (RelationshipID)
|
||||||
|
INNER JOIN ParsedObjects USING (ObjectID)
|
||||||
|
INNER JOIN WikipediaAbstracts USING (MovieID)
|
||||||
|
WHERE MovieID = (?) AND RelationshipID IN ({relationship_placeholder});
|
||||||
|
"""
|
||||||
|
|
||||||
|
for movie_id in MOVIE_ID["MovieID"].to_list():
|
||||||
|
params = (movie_id,) + param
|
||||||
|
yield self.sql_endpoint.get_dataframe_from_query(QUERY, params=params)
|
||||||
54
Scripts/DataCleaning/pipeline/relationship_filter.py
Normal file
54
Scripts/DataCleaning/pipeline/relationship_filter.py
Normal file
@@ -0,0 +1,54 @@
|
|||||||
|
import pandas as pd
|
||||||
|
from Scripts.Libs.CleaningPipeline.sql_endpoint import SqlEndpoint
|
||||||
|
|
||||||
|
class RelationshipFilter:
|
||||||
|
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self.sql_endpoint = SqlEndpoint()
|
||||||
|
# first obtain all relationship_id
|
||||||
|
relationship_query = "SELECT RelationshipID FROM Relationships"
|
||||||
|
self.RELATIONSHIP_FILTER = self.sql_endpoint.get_dataframe_from_query(relationship_query)
|
||||||
|
|
||||||
|
|
||||||
|
def frequency_filter(self, min_treshold:int, max_treshold:int):
|
||||||
|
movie_list_placeholder = ",".join(["?"] * len(self.RELATIONSHIP_FILTER))
|
||||||
|
|
||||||
|
filter_query = f"""
|
||||||
|
SELECT RelationshipID
|
||||||
|
FROM RDFs
|
||||||
|
WHERE RelationshipID IN ({movie_list_placeholder})
|
||||||
|
GROUP BY RelationshipID
|
||||||
|
HAVING COUNT(*) BETWEEN {min_treshold} AND {max_treshold};
|
||||||
|
"""
|
||||||
|
self.RELATIONSHIP_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, tuple(self.RELATIONSHIP_FILTER["RelationshipID"].to_list()))
|
||||||
|
|
||||||
|
|
||||||
|
def get_relationship_id(self):
|
||||||
|
return self.RELATIONSHIP_FILTER
|
||||||
|
|
||||||
|
def get_relationship_id_from_white_list(self, relationship_list: list[str]):
|
||||||
|
ids_placeholder = ",".join(["?"] * len(self.RELATIONSHIP_FILTER))
|
||||||
|
uri_placeholder = ",".join(["?"] * len(relationship_list))
|
||||||
|
filter_query = f"""
|
||||||
|
SELECT RelationshipID
|
||||||
|
FROM ParsedRelationships
|
||||||
|
WHERE RelationshipID IN ({ids_placeholder})
|
||||||
|
AND RelationshipURI IN ({uri_placeholder});
|
||||||
|
"""
|
||||||
|
params = tuple(self.RELATIONSHIP_FILTER["RelationshipID"].to_list()) + tuple(relationship_list)
|
||||||
|
return self.sql_endpoint.get_dataframe_from_query(filter_query, params)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def delete_relationship_uri_by_list(self, filter_list: list[str]):
|
||||||
|
ids_placeholder = ",".join(["?"] * len(self.RELATIONSHIP_FILTER))
|
||||||
|
uri_placeholder = ",".join(["?"] * len(filter_list))
|
||||||
|
|
||||||
|
filter_query = f"""
|
||||||
|
SELECT RelationshipID
|
||||||
|
FROM ParsedRelationships
|
||||||
|
WHERE RelationshipID IN ({ids_placeholder})
|
||||||
|
AND RelationshipURI NOT IN ({uri_placeholder});
|
||||||
|
"""
|
||||||
|
params = tuple(self.RELATIONSHIP_FILTER["RelationshipID"].to_list()) + tuple(filter_list)
|
||||||
|
self.RELATIONSHIP_FILTER = self.sql_endpoint.get_dataframe_from_query(filter_query, params)
|
||||||
22
Scripts/Libs/CleaningPipeline/special_token.py
Normal file
22
Scripts/Libs/CleaningPipeline/special_token.py
Normal file
@@ -0,0 +1,22 @@
|
|||||||
|
from enum import Enum
|
||||||
|
|
||||||
|
class SpecialToken(str, Enum):
|
||||||
|
# (Enum, str) -> throws an error
|
||||||
|
START_TRIPLE_LIST = "<SOTL>"
|
||||||
|
START_TRIPLE = "<SOT>"
|
||||||
|
END_TRIPLE = "<EOT>"
|
||||||
|
SUBJECT = "<SUBJ>"
|
||||||
|
RELATIONSHIP = "<PRED>"
|
||||||
|
OBJECT = "<OBJ>"
|
||||||
|
ABSTRACT = "<ABS>"
|
||||||
|
END_OF_SENTENCE = "<EOS>"
|
||||||
|
CORPUS_END = "<END>"
|
||||||
|
|
||||||
|
## Tasks' Token
|
||||||
|
RDF_TO_TEXT = "<RDF2TXT>"
|
||||||
|
TEXT_TO_RDF = "<TEXT2RDF>"
|
||||||
|
CONTINUE_RDF = "<CONTINUERDF>"
|
||||||
|
MASK = "<MASK>"
|
||||||
|
|
||||||
|
#BPE Training:
|
||||||
|
|
||||||
149
Scripts/Libs/CleaningPipeline/sql_endpoint.py
Normal file
149
Scripts/Libs/CleaningPipeline/sql_endpoint.py
Normal file
@@ -0,0 +1,149 @@
|
|||||||
|
#######################################################
|
||||||
|
# This file stand as endpoint to interact with DB #
|
||||||
|
#######################################################
|
||||||
|
|
||||||
|
# import sqlite3
|
||||||
|
import pandas as pd
|
||||||
|
from sqlalchemy import create_engine
|
||||||
|
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
|
||||||
|
|
||||||
|
|
||||||
|
class SqlEndpoint():
|
||||||
|
|
||||||
|
def __init__(self, DB_PATH = "./Assets/Dataset/DatawareHouse/dataset.db", chunk_size_row = 500):
|
||||||
|
# self.CONN = sqlite3.connect(DB_PATH) # DEPRECATED
|
||||||
|
self.sql_engine = create_engine(f"sqlite:///{DB_PATH}")
|
||||||
|
# /// 3 slash -> relative path
|
||||||
|
# //// 4 slash -> absolute
|
||||||
|
# self.conn = self.sql_engine.connect().execution_options(stream_results=True)
|
||||||
|
# it seems that sqlite doenst support streamer cursor
|
||||||
|
# PRAGMA exeutes better in writing not reading
|
||||||
|
self.chunk_size_row = chunk_size_row # not used now, since each chunk is a movie
|
||||||
|
self.movie_ids = movie_ids = pd.read_sql_query("SELECT MovieID FROM Movies;", self.sql_engine)["MovieID"]
|
||||||
|
|
||||||
|
def get_RDF(self) -> pd.DataFrame :
|
||||||
|
|
||||||
|
QUERY = """
|
||||||
|
SELECT MovieID, SubjectURI, RelationshipURI, ObjectURI
|
||||||
|
FROM RDFs
|
||||||
|
INNER JOIN Subjects USING (SubjectID)
|
||||||
|
INNER JOIN Relationships USING (RelationshipID)
|
||||||
|
INNER JOIN Objects USING (ObjectID);
|
||||||
|
"""
|
||||||
|
|
||||||
|
return pd.read_sql_query(QUERY, self.CONN)
|
||||||
|
|
||||||
|
def get_chunked_abbreviated_dataset(self) -> pd.DataFrame :
|
||||||
|
"""
|
||||||
|
Returns:
|
||||||
|
pd.DataFrame: MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
|
||||||
|
"""
|
||||||
|
|
||||||
|
QUERY = """
|
||||||
|
SELECT MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
|
||||||
|
FROM RDFs
|
||||||
|
INNER JOIN ParsedSubjects USING (SubjectID)
|
||||||
|
INNER JOIN ParsedRelationships USING (RelationshipID)
|
||||||
|
INNER JOIN ParsedObjects USING (ObjectID)
|
||||||
|
INNER JOIN WikipediaAbstracts USING (MovieID);
|
||||||
|
"""
|
||||||
|
|
||||||
|
# return pd.read_sql_query(QUERY, self.CONN, chunksize=500)
|
||||||
|
# sqlite3
|
||||||
|
return pd.read_sql_query(QUERY, self.sql_engine, chunksize=self.chunk_size_row)
|
||||||
|
|
||||||
|
|
||||||
|
def get_chunked_abbreviated_dataset_with_start_token(self)-> pd.DataFrame:
|
||||||
|
# DEPRECATED !
|
||||||
|
start_token = SpecialToken()
|
||||||
|
QUERY = """
|
||||||
|
SELECT
|
||||||
|
MovieID,
|
||||||
|
? || SubjectURI AS SubjectURI,
|
||||||
|
? || RelationshipURI AS RelationshipURI,
|
||||||
|
? || ObjectURI AS ObjectURI,
|
||||||
|
Abstract
|
||||||
|
FROM RDFs
|
||||||
|
INNER JOIN ParsedSubjects USING (SubjectID)
|
||||||
|
INNER JOIN ParsedRelationships USING (RelationshipID)
|
||||||
|
INNER JOIN ParsedObjects USING (ObjectID)
|
||||||
|
INNER JOIN WikipediaAbstracts USING (MovieID);
|
||||||
|
"""
|
||||||
|
return pd.read_sql_query(QUERY, self.sql_engine, chunksize=self.chunk_size_row)
|
||||||
|
|
||||||
|
def get_abbreviated_dataset_by_movie_id(self):# -> iter[pd.DataFrame]:
|
||||||
|
"""
|
||||||
|
Gets each time a DataFrame per movie ( with all its rows in the dataset).
|
||||||
|
The retrieved RDFs are already abbrevieted by the sql parser
|
||||||
|
Yields:
|
||||||
|
Pandas.DataFrame: [MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract]
|
||||||
|
"""
|
||||||
|
# chunk by movieId, abstract is the same and some intersting logic are appliable
|
||||||
|
# movie_ids = pd.read_sql_query("SELECT MovieID FROM Movies;", self.sql_engine)["MovieID"]
|
||||||
|
# CHOOSEN MOVIE:
|
||||||
|
# The Dark Knight : 117248
|
||||||
|
# Inception : 147074
|
||||||
|
# The Avengers : 113621
|
||||||
|
# Cast Away : 1123
|
||||||
|
# The Departed : 117586
|
||||||
|
# American Psycho : 90177
|
||||||
|
# Avatar : 71587
|
||||||
|
# Django Unchained : 138952
|
||||||
|
# Spirited Away : 144137
|
||||||
|
# Knives Out : 148025
|
||||||
|
# movie_list = [117248, 147074, 113621, 1123, 117586, 90177, 71587, 138952, 144137, 148025]
|
||||||
|
# movie_ids = movie_list
|
||||||
|
|
||||||
|
QUERY = """
|
||||||
|
SELECT MovieID, SubjectURI, RelationshipURI, ObjectURI, Abstract
|
||||||
|
FROM RDFs
|
||||||
|
INNER JOIN ParsedSubjects USING (SubjectID)
|
||||||
|
INNER JOIN ParsedRelationships USING (RelationshipID)
|
||||||
|
INNER JOIN ParsedObjects USING (ObjectID)
|
||||||
|
INNER JOIN WikipediaAbstracts USING (MovieID)
|
||||||
|
WHERE MovieID = (?);
|
||||||
|
"""
|
||||||
|
|
||||||
|
for movie_id in self.movie_ids:
|
||||||
|
yield pd.read_sql_query(QUERY, self.sql_engine, params=(movie_id,))
|
||||||
|
|
||||||
|
def get_movies_id_count(self) -> pd.DataFrame:
|
||||||
|
"""
|
||||||
|
Gets the count of each Movie in the Dataset
|
||||||
|
Returns:
|
||||||
|
Pandas.DataFrame: [MovieID, Count]
|
||||||
|
"""
|
||||||
|
QUERY = """
|
||||||
|
SELECT MovieID, COUNT(*) AS Count
|
||||||
|
FROM RDFs
|
||||||
|
GROUP BY MovieID;
|
||||||
|
"""
|
||||||
|
return pd.read_sql_query(QUERY, self.sql_engine)
|
||||||
|
|
||||||
|
def get_relationship_count(self) -> pd.DataFrame:
|
||||||
|
"""
|
||||||
|
Gets the count of each Relationship in the Dataset
|
||||||
|
Returns:
|
||||||
|
Pandas.DataFrame: [RelationshipURI, Count]
|
||||||
|
"""
|
||||||
|
QUERY = """
|
||||||
|
SELECT RelationshipURI, COUNT(*) AS Count
|
||||||
|
FROM RDFs
|
||||||
|
INNER JOIN ParsedRelationships USING (RelationshipID)
|
||||||
|
GROUP BY RelationshipURI;
|
||||||
|
"""
|
||||||
|
return pd.read_sql_query(QUERY, self.sql_engine)
|
||||||
|
|
||||||
|
def get_dataframe_from_query(self, query: str, params=None):
|
||||||
|
if params is None:
|
||||||
|
return pd.read_sql_query(query, self.sql_engine)
|
||||||
|
return pd.read_sql_query(query, self.sql_engine, params=params)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__" :
|
||||||
|
sql_endpoint = SqlEndpoint()
|
||||||
|
for pandas_row in sql_endpoint.get_abbreviated_dataset_by_movie_id():
|
||||||
|
print(pandas_row)
|
||||||
|
# sql_endpoint.get_RDF()
|
||||||
|
print("done")
|
||||||
9
Scripts/Libs/Utils/dataframe_interaction.py
Normal file
9
Scripts/Libs/Utils/dataframe_interaction.py
Normal file
@@ -0,0 +1,9 @@
|
|||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def get_raw_from_dataframe(DF: pd.DataFrame) -> str:
|
||||||
|
output = ''
|
||||||
|
for row in DF.itertuples(index=False, name=None):
|
||||||
|
output += "".join(map(str, row))
|
||||||
|
return output
|
||||||
897
Scripts/UML/CleaningPipeline/bpe-pipeline.excalidraw.json
Normal file
897
Scripts/UML/CleaningPipeline/bpe-pipeline.excalidraw.json
Normal file
@@ -0,0 +1,897 @@
|
|||||||
|
{
|
||||||
|
"type": "excalidraw",
|
||||||
|
"version": 2,
|
||||||
|
"source": "https://marketplace.visualstudio.com/items?itemName=pomdtr.excalidraw-editor",
|
||||||
|
"elements": [
|
||||||
|
{
|
||||||
|
"id": "3zbCui3XtIGozHXTVAGRp",
|
||||||
|
"type": "rectangle",
|
||||||
|
"x": 316.5,
|
||||||
|
"y": 123,
|
||||||
|
"width": 436.5,
|
||||||
|
"height": 145.5,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "a0",
|
||||||
|
"roundness": {
|
||||||
|
"type": 3
|
||||||
|
},
|
||||||
|
"seed": 1698427950,
|
||||||
|
"version": 35,
|
||||||
|
"versionNonce": 601575602,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": [
|
||||||
|
{
|
||||||
|
"id": "wD66RDbG05HfvRhAtMb0J",
|
||||||
|
"type": "text"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "gus_rxauKJ6T2L_F59PfN",
|
||||||
|
"type": "arrow"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"updated": 1758818588814,
|
||||||
|
"link": null,
|
||||||
|
"locked": false
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "wD66RDbG05HfvRhAtMb0J",
|
||||||
|
"type": "text",
|
||||||
|
"x": 480.98004150390625,
|
||||||
|
"y": 183.25,
|
||||||
|
"width": 107.5399169921875,
|
||||||
|
"height": 25,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "a1",
|
||||||
|
"roundness": null,
|
||||||
|
"seed": 910769774,
|
||||||
|
"version": 31,
|
||||||
|
"versionNonce": 1120989938,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": null,
|
||||||
|
"updated": 1758818416720,
|
||||||
|
"link": null,
|
||||||
|
"locked": false,
|
||||||
|
"text": "dataset.db",
|
||||||
|
"fontSize": 20,
|
||||||
|
"fontFamily": 5,
|
||||||
|
"textAlign": "center",
|
||||||
|
"verticalAlign": "middle",
|
||||||
|
"containerId": "3zbCui3XtIGozHXTVAGRp",
|
||||||
|
"originalText": "dataset.db",
|
||||||
|
"autoResize": true,
|
||||||
|
"lineHeight": 1.25
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "87-MeaiZGT1wln0nggYPZ",
|
||||||
|
"type": "rectangle",
|
||||||
|
"x": 339.5,
|
||||||
|
"y": 309.5,
|
||||||
|
"width": 392,
|
||||||
|
"height": 156,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "a2",
|
||||||
|
"roundness": {
|
||||||
|
"type": 3
|
||||||
|
},
|
||||||
|
"seed": 655550318,
|
||||||
|
"version": 77,
|
||||||
|
"versionNonce": 1103939826,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": null,
|
||||||
|
"updated": 1758818339000,
|
||||||
|
"link": null,
|
||||||
|
"locked": false
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "EjUxEhZqEBzwvlw0VE9eJ",
|
||||||
|
"type": "rectangle",
|
||||||
|
"x": 355.5,
|
||||||
|
"y": 327,
|
||||||
|
"width": 162,
|
||||||
|
"height": 125.5,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "a3",
|
||||||
|
"roundness": {
|
||||||
|
"type": 3
|
||||||
|
},
|
||||||
|
"seed": 1739846638,
|
||||||
|
"version": 64,
|
||||||
|
"versionNonce": 1594290034,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": [
|
||||||
|
{
|
||||||
|
"type": "text",
|
||||||
|
"id": "ogRkV0neHrhEKTE6zlggl"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"updated": 1758818391415,
|
||||||
|
"link": null,
|
||||||
|
"locked": false
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "ogRkV0neHrhEKTE6zlggl",
|
||||||
|
"type": "text",
|
||||||
|
"x": 378.7100524902344,
|
||||||
|
"y": 377.25,
|
||||||
|
"width": 115.57989501953125,
|
||||||
|
"height": 25,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "a3V",
|
||||||
|
"roundness": null,
|
||||||
|
"seed": 2037675630,
|
||||||
|
"version": 12,
|
||||||
|
"versionNonce": 1286472046,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": null,
|
||||||
|
"updated": 1758818399222,
|
||||||
|
"link": null,
|
||||||
|
"locked": false,
|
||||||
|
"text": "RDF_String",
|
||||||
|
"fontSize": 20,
|
||||||
|
"fontFamily": 5,
|
||||||
|
"textAlign": "center",
|
||||||
|
"verticalAlign": "middle",
|
||||||
|
"containerId": "EjUxEhZqEBzwvlw0VE9eJ",
|
||||||
|
"originalText": "RDF_String",
|
||||||
|
"autoResize": true,
|
||||||
|
"lineHeight": 1.25
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "hoIRMNiMJZl4YDo-hovWy",
|
||||||
|
"type": "rectangle",
|
||||||
|
"x": 542.5,
|
||||||
|
"y": 327,
|
||||||
|
"width": 173,
|
||||||
|
"height": 125.5,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "a4",
|
||||||
|
"roundness": {
|
||||||
|
"type": 3
|
||||||
|
},
|
||||||
|
"seed": 1189796530,
|
||||||
|
"version": 99,
|
||||||
|
"versionNonce": 1071057006,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": [
|
||||||
|
{
|
||||||
|
"type": "text",
|
||||||
|
"id": "rsapATFAT5YSBCXzLupgZ"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "gus_rxauKJ6T2L_F59PfN",
|
||||||
|
"type": "arrow"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "Wk1bJbbtC31FqObEL5xWt",
|
||||||
|
"type": "arrow"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"updated": 1758818593647,
|
||||||
|
"link": null,
|
||||||
|
"locked": false
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "rsapATFAT5YSBCXzLupgZ",
|
||||||
|
"type": "text",
|
||||||
|
"x": 585.6800384521484,
|
||||||
|
"y": 377.25,
|
||||||
|
"width": 86.63992309570312,
|
||||||
|
"height": 25,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "a5",
|
||||||
|
"roundness": null,
|
||||||
|
"seed": 829619694,
|
||||||
|
"version": 12,
|
||||||
|
"versionNonce": 713902318,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": null,
|
||||||
|
"updated": 1758818405150,
|
||||||
|
"link": null,
|
||||||
|
"locked": false,
|
||||||
|
"text": "Abstract",
|
||||||
|
"fontSize": 20,
|
||||||
|
"fontFamily": 5,
|
||||||
|
"textAlign": "center",
|
||||||
|
"verticalAlign": "middle",
|
||||||
|
"containerId": "hoIRMNiMJZl4YDo-hovWy",
|
||||||
|
"originalText": "Abstract",
|
||||||
|
"autoResize": true,
|
||||||
|
"lineHeight": 1.25
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "jSx8ApfhtRs_nk37VvDMb",
|
||||||
|
"type": "rectangle",
|
||||||
|
"x": 316.5,
|
||||||
|
"y": 511,
|
||||||
|
"width": 436.5,
|
||||||
|
"height": 145.5,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "a6",
|
||||||
|
"roundness": {
|
||||||
|
"type": 3
|
||||||
|
},
|
||||||
|
"seed": 492582894,
|
||||||
|
"version": 132,
|
||||||
|
"versionNonce": 893797614,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": [
|
||||||
|
{
|
||||||
|
"type": "text",
|
||||||
|
"id": "6E23g-rgowNqHsBxX-LuM"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "hyFKqXwet_F79QM71atgI",
|
||||||
|
"type": "arrow"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "x_DP1FcQ7jraGz0gBuDi3",
|
||||||
|
"type": "arrow"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "1IGbCps2EHnzKgJUWM5nq",
|
||||||
|
"type": "arrow"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "Wk1bJbbtC31FqObEL5xWt",
|
||||||
|
"type": "arrow"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"updated": 1758818593647,
|
||||||
|
"link": null,
|
||||||
|
"locked": false
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "6E23g-rgowNqHsBxX-LuM",
|
||||||
|
"type": "text",
|
||||||
|
"x": 499.9100341796875,
|
||||||
|
"y": 571.25,
|
||||||
|
"width": 69.679931640625,
|
||||||
|
"height": 25,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "a7",
|
||||||
|
"roundness": null,
|
||||||
|
"seed": 267696178,
|
||||||
|
"version": 132,
|
||||||
|
"versionNonce": 1668243186,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": null,
|
||||||
|
"updated": 1758818543211,
|
||||||
|
"link": null,
|
||||||
|
"locked": false,
|
||||||
|
"text": "Pandas",
|
||||||
|
"fontSize": 20,
|
||||||
|
"fontFamily": 5,
|
||||||
|
"textAlign": "center",
|
||||||
|
"verticalAlign": "middle",
|
||||||
|
"containerId": "jSx8ApfhtRs_nk37VvDMb",
|
||||||
|
"originalText": "Pandas",
|
||||||
|
"autoResize": true,
|
||||||
|
"lineHeight": 1.25
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "ohj18N4AOTDz5lJNcV9gi",
|
||||||
|
"type": "rectangle",
|
||||||
|
"x": 261,
|
||||||
|
"y": 765.5,
|
||||||
|
"width": 157,
|
||||||
|
"height": 87,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "a8",
|
||||||
|
"roundness": {
|
||||||
|
"type": 3
|
||||||
|
},
|
||||||
|
"seed": 1446207150,
|
||||||
|
"version": 279,
|
||||||
|
"versionNonce": 317375026,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": [
|
||||||
|
{
|
||||||
|
"id": "Ea1_ke2wA0D8ZjVOUtvfY",
|
||||||
|
"type": "text"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "hyFKqXwet_F79QM71atgI",
|
||||||
|
"type": "arrow"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"updated": 1758818570993,
|
||||||
|
"link": null,
|
||||||
|
"locked": false
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "Ea1_ke2wA0D8ZjVOUtvfY",
|
||||||
|
"type": "text",
|
||||||
|
"x": 297.0800323486328,
|
||||||
|
"y": 796.5,
|
||||||
|
"width": 84.83993530273438,
|
||||||
|
"height": 25,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "a9",
|
||||||
|
"roundness": null,
|
||||||
|
"seed": 435116270,
|
||||||
|
"version": 199,
|
||||||
|
"versionNonce": 1282911218,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": null,
|
||||||
|
"updated": 1758818570993,
|
||||||
|
"link": null,
|
||||||
|
"locked": false,
|
||||||
|
"text": "train.txt",
|
||||||
|
"fontSize": 20,
|
||||||
|
"fontFamily": 5,
|
||||||
|
"textAlign": "center",
|
||||||
|
"verticalAlign": "middle",
|
||||||
|
"containerId": "ohj18N4AOTDz5lJNcV9gi",
|
||||||
|
"originalText": "train.txt",
|
||||||
|
"autoResize": true,
|
||||||
|
"lineHeight": 1.25
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "A4Y54Y26fe257U_QU9lxX",
|
||||||
|
"type": "rectangle",
|
||||||
|
"x": 464,
|
||||||
|
"y": 765.5,
|
||||||
|
"width": 157,
|
||||||
|
"height": 87,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "aA",
|
||||||
|
"roundness": {
|
||||||
|
"type": 3
|
||||||
|
},
|
||||||
|
"seed": 186148850,
|
||||||
|
"version": 232,
|
||||||
|
"versionNonce": 997119858,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": [
|
||||||
|
{
|
||||||
|
"id": "v4TvUlDEjH7EvPDmtbOn2",
|
||||||
|
"type": "text"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "1IGbCps2EHnzKgJUWM5nq",
|
||||||
|
"type": "arrow"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"updated": 1758818570993,
|
||||||
|
"link": null,
|
||||||
|
"locked": false
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "v4TvUlDEjH7EvPDmtbOn2",
|
||||||
|
"type": "text",
|
||||||
|
"x": 476.3500442504883,
|
||||||
|
"y": 796.5,
|
||||||
|
"width": 132.29991149902344,
|
||||||
|
"height": 25,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "aB",
|
||||||
|
"roundness": null,
|
||||||
|
"seed": 1131059634,
|
||||||
|
"version": 171,
|
||||||
|
"versionNonce": 239540530,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": null,
|
||||||
|
"updated": 1758818570993,
|
||||||
|
"link": null,
|
||||||
|
"locked": false,
|
||||||
|
"text": "validation.txt",
|
||||||
|
"fontSize": 20,
|
||||||
|
"fontFamily": 5,
|
||||||
|
"textAlign": "center",
|
||||||
|
"verticalAlign": "middle",
|
||||||
|
"containerId": "A4Y54Y26fe257U_QU9lxX",
|
||||||
|
"originalText": "validation.txt",
|
||||||
|
"autoResize": true,
|
||||||
|
"lineHeight": 1.25
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "mPaYpJ9Xn7tlJPmKPqJKJ",
|
||||||
|
"type": "rectangle",
|
||||||
|
"x": 674.5,
|
||||||
|
"y": 765.5,
|
||||||
|
"width": 157,
|
||||||
|
"height": 87,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "aC",
|
||||||
|
"roundness": {
|
||||||
|
"type": 3
|
||||||
|
},
|
||||||
|
"seed": 1049323314,
|
||||||
|
"version": 235,
|
||||||
|
"versionNonce": 330560690,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": [
|
||||||
|
{
|
||||||
|
"type": "text",
|
||||||
|
"id": "kg9nm2rpud6cax5aNPSnu"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "x_DP1FcQ7jraGz0gBuDi3",
|
||||||
|
"type": "arrow"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"updated": 1758818570993,
|
||||||
|
"link": null,
|
||||||
|
"locked": false
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "kg9nm2rpud6cax5aNPSnu",
|
||||||
|
"type": "text",
|
||||||
|
"x": 711.4300231933594,
|
||||||
|
"y": 796.5,
|
||||||
|
"width": 83.13995361328125,
|
||||||
|
"height": 25,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "aD",
|
||||||
|
"roundness": null,
|
||||||
|
"seed": 522572142,
|
||||||
|
"version": 193,
|
||||||
|
"versionNonce": 1920372338,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": null,
|
||||||
|
"updated": 1758818570993,
|
||||||
|
"link": null,
|
||||||
|
"locked": false,
|
||||||
|
"text": "test.txt",
|
||||||
|
"fontSize": 20,
|
||||||
|
"fontFamily": 5,
|
||||||
|
"textAlign": "center",
|
||||||
|
"verticalAlign": "middle",
|
||||||
|
"containerId": "mPaYpJ9Xn7tlJPmKPqJKJ",
|
||||||
|
"originalText": "test.txt",
|
||||||
|
"autoResize": true,
|
||||||
|
"lineHeight": 1.25
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "hyFKqXwet_F79QM71atgI",
|
||||||
|
"type": "arrow",
|
||||||
|
"x": 534.65,
|
||||||
|
"y": 661.5,
|
||||||
|
"width": 195.25,
|
||||||
|
"height": 99,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "aG",
|
||||||
|
"roundness": null,
|
||||||
|
"seed": 873266098,
|
||||||
|
"version": 71,
|
||||||
|
"versionNonce": 541154738,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": null,
|
||||||
|
"updated": 1758818570993,
|
||||||
|
"link": null,
|
||||||
|
"locked": false,
|
||||||
|
"points": [
|
||||||
|
[
|
||||||
|
0,
|
||||||
|
0
|
||||||
|
],
|
||||||
|
[
|
||||||
|
0,
|
||||||
|
49.5
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-195.25,
|
||||||
|
49.5
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-195.25,
|
||||||
|
99
|
||||||
|
]
|
||||||
|
],
|
||||||
|
"lastCommittedPoint": null,
|
||||||
|
"startBinding": {
|
||||||
|
"elementId": "jSx8ApfhtRs_nk37VvDMb",
|
||||||
|
"fixedPoint": [
|
||||||
|
0.49977090492554405,
|
||||||
|
1.034364261168385
|
||||||
|
],
|
||||||
|
"focus": 0,
|
||||||
|
"gap": 0
|
||||||
|
},
|
||||||
|
"endBinding": {
|
||||||
|
"elementId": "ohj18N4AOTDz5lJNcV9gi",
|
||||||
|
"fixedPoint": [
|
||||||
|
0.4993630573248406,
|
||||||
|
-0.05747126436781609
|
||||||
|
],
|
||||||
|
"focus": 0,
|
||||||
|
"gap": 0
|
||||||
|
},
|
||||||
|
"startArrowhead": null,
|
||||||
|
"endArrowhead": "triangle",
|
||||||
|
"elbowed": true,
|
||||||
|
"fixedSegments": null,
|
||||||
|
"startIsSpecial": null,
|
||||||
|
"endIsSpecial": null
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "x_DP1FcQ7jraGz0gBuDi3",
|
||||||
|
"type": "arrow",
|
||||||
|
"x": 534.65,
|
||||||
|
"y": 661.5,
|
||||||
|
"width": 218.25,
|
||||||
|
"height": 99,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "aH",
|
||||||
|
"roundness": null,
|
||||||
|
"seed": 1210817582,
|
||||||
|
"version": 77,
|
||||||
|
"versionNonce": 1483392370,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": null,
|
||||||
|
"updated": 1758818580594,
|
||||||
|
"link": null,
|
||||||
|
"locked": false,
|
||||||
|
"points": [
|
||||||
|
[
|
||||||
|
0,
|
||||||
|
0
|
||||||
|
],
|
||||||
|
[
|
||||||
|
0,
|
||||||
|
49.5
|
||||||
|
],
|
||||||
|
[
|
||||||
|
218.25,
|
||||||
|
49.5
|
||||||
|
],
|
||||||
|
[
|
||||||
|
218.25,
|
||||||
|
99
|
||||||
|
]
|
||||||
|
],
|
||||||
|
"lastCommittedPoint": null,
|
||||||
|
"startBinding": {
|
||||||
|
"elementId": "jSx8ApfhtRs_nk37VvDMb",
|
||||||
|
"fixedPoint": [
|
||||||
|
0.49977090492554405,
|
||||||
|
1.034364261168385
|
||||||
|
],
|
||||||
|
"focus": 0,
|
||||||
|
"gap": 0
|
||||||
|
},
|
||||||
|
"endBinding": {
|
||||||
|
"elementId": "mPaYpJ9Xn7tlJPmKPqJKJ",
|
||||||
|
"fixedPoint": [
|
||||||
|
0.4993630573248406,
|
||||||
|
-0.05747126436781609
|
||||||
|
],
|
||||||
|
"focus": 0,
|
||||||
|
"gap": 0
|
||||||
|
},
|
||||||
|
"startArrowhead": null,
|
||||||
|
"endArrowhead": "triangle",
|
||||||
|
"elbowed": true,
|
||||||
|
"fixedSegments": null,
|
||||||
|
"startIsSpecial": null,
|
||||||
|
"endIsSpecial": null
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "1IGbCps2EHnzKgJUWM5nq",
|
||||||
|
"type": "arrow",
|
||||||
|
"x": 534.65,
|
||||||
|
"y": 661.5,
|
||||||
|
"width": 0.5719232650604908,
|
||||||
|
"height": 99.07394122590165,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "aK",
|
||||||
|
"roundness": null,
|
||||||
|
"seed": 1205316658,
|
||||||
|
"version": 96,
|
||||||
|
"versionNonce": 1748050674,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": null,
|
||||||
|
"updated": 1758818570993,
|
||||||
|
"link": null,
|
||||||
|
"locked": false,
|
||||||
|
"points": [
|
||||||
|
[
|
||||||
|
0,
|
||||||
|
0
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-0.5719232650604908,
|
||||||
|
99.07394122590165
|
||||||
|
]
|
||||||
|
],
|
||||||
|
"lastCommittedPoint": null,
|
||||||
|
"startBinding": {
|
||||||
|
"elementId": "jSx8ApfhtRs_nk37VvDMb",
|
||||||
|
"fixedPoint": [
|
||||||
|
0.49977090492554405,
|
||||||
|
1.034364261168385
|
||||||
|
],
|
||||||
|
"focus": 0,
|
||||||
|
"gap": 0
|
||||||
|
},
|
||||||
|
"endBinding": {
|
||||||
|
"elementId": "A4Y54Y26fe257U_QU9lxX",
|
||||||
|
"fixedPoint": [
|
||||||
|
0.44635717665566554,
|
||||||
|
-0.056621365219521276
|
||||||
|
],
|
||||||
|
"focus": 0,
|
||||||
|
"gap": 0
|
||||||
|
},
|
||||||
|
"startArrowhead": null,
|
||||||
|
"endArrowhead": "triangle",
|
||||||
|
"elbowed": true,
|
||||||
|
"fixedSegments": null,
|
||||||
|
"startIsSpecial": null,
|
||||||
|
"endIsSpecial": null
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "gus_rxauKJ6T2L_F59PfN",
|
||||||
|
"type": "arrow",
|
||||||
|
"x": 539,
|
||||||
|
"y": 271.5,
|
||||||
|
"width": 0,
|
||||||
|
"height": 33.5,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "aL",
|
||||||
|
"roundness": null,
|
||||||
|
"seed": 763990258,
|
||||||
|
"version": 17,
|
||||||
|
"versionNonce": 1028811378,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": null,
|
||||||
|
"updated": 1758818588814,
|
||||||
|
"link": null,
|
||||||
|
"locked": false,
|
||||||
|
"points": [
|
||||||
|
[
|
||||||
|
0,
|
||||||
|
0
|
||||||
|
],
|
||||||
|
[
|
||||||
|
0,
|
||||||
|
33.5
|
||||||
|
]
|
||||||
|
],
|
||||||
|
"lastCommittedPoint": null,
|
||||||
|
"startBinding": {
|
||||||
|
"elementId": "3zbCui3XtIGozHXTVAGRp",
|
||||||
|
"focus": -0.019473081328751418,
|
||||||
|
"gap": 3
|
||||||
|
},
|
||||||
|
"endBinding": {
|
||||||
|
"elementId": "hoIRMNiMJZl4YDo-hovWy",
|
||||||
|
"focus": -1.0404624277456647,
|
||||||
|
"gap": 30.7545797799829
|
||||||
|
},
|
||||||
|
"startArrowhead": null,
|
||||||
|
"endArrowhead": "triangle",
|
||||||
|
"elbowed": false
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "Wk1bJbbtC31FqObEL5xWt",
|
||||||
|
"type": "arrow",
|
||||||
|
"x": 536.5,
|
||||||
|
"y": 468.5,
|
||||||
|
"width": 0,
|
||||||
|
"height": 39,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "aM",
|
||||||
|
"roundness": null,
|
||||||
|
"seed": 1489771054,
|
||||||
|
"version": 33,
|
||||||
|
"versionNonce": 1828178606,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": null,
|
||||||
|
"updated": 1758818593647,
|
||||||
|
"link": null,
|
||||||
|
"locked": false,
|
||||||
|
"points": [
|
||||||
|
[
|
||||||
|
0,
|
||||||
|
0
|
||||||
|
],
|
||||||
|
[
|
||||||
|
0,
|
||||||
|
39
|
||||||
|
]
|
||||||
|
],
|
||||||
|
"lastCommittedPoint": null,
|
||||||
|
"startBinding": {
|
||||||
|
"elementId": "hoIRMNiMJZl4YDo-hovWy",
|
||||||
|
"focus": 1.0693641618497107,
|
||||||
|
"gap": 27.157190169432425
|
||||||
|
},
|
||||||
|
"endBinding": {
|
||||||
|
"elementId": "jSx8ApfhtRs_nk37VvDMb",
|
||||||
|
"focus": 0.008018327605956525,
|
||||||
|
"gap": 3.5
|
||||||
|
},
|
||||||
|
"startArrowhead": null,
|
||||||
|
"endArrowhead": "triangle",
|
||||||
|
"elbowed": false
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"appState": {
|
||||||
|
"gridSize": 20,
|
||||||
|
"gridStep": 5,
|
||||||
|
"gridModeEnabled": false,
|
||||||
|
"viewBackgroundColor": "#ffffff"
|
||||||
|
},
|
||||||
|
"files": {}
|
||||||
|
}
|
||||||
634
Scripts/UML/CleaningPipeline/cleaning-pipeline.excalidraw.json
Normal file
634
Scripts/UML/CleaningPipeline/cleaning-pipeline.excalidraw.json
Normal file
@@ -0,0 +1,634 @@
|
|||||||
|
{
|
||||||
|
"type": "excalidraw",
|
||||||
|
"version": 2,
|
||||||
|
"source": "https://marketplace.visualstudio.com/items?itemName=pomdtr.excalidraw-editor",
|
||||||
|
"elements": [
|
||||||
|
{
|
||||||
|
"id": "JNB9z-PeqZ4s8KDfWaoXe",
|
||||||
|
"type": "rectangle",
|
||||||
|
"x": 106,
|
||||||
|
"y": 27,
|
||||||
|
"width": 653,
|
||||||
|
"height": 263,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "a2",
|
||||||
|
"roundness": {
|
||||||
|
"type": 3
|
||||||
|
},
|
||||||
|
"seed": 710740889,
|
||||||
|
"version": 326,
|
||||||
|
"versionNonce": 1107631703,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": null,
|
||||||
|
"updated": 1759156408059,
|
||||||
|
"link": null,
|
||||||
|
"locked": false
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "e13wNTgUpn2flMpmMttqx",
|
||||||
|
"type": "text",
|
||||||
|
"x": 200.5943407656526,
|
||||||
|
"y": 44.07937975075269,
|
||||||
|
"width": 307.2781467269385,
|
||||||
|
"height": 23.3097531902191,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "a3",
|
||||||
|
"roundness": null,
|
||||||
|
"seed": 1012740663,
|
||||||
|
"version": 444,
|
||||||
|
"versionNonce": 589551257,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": null,
|
||||||
|
"updated": 1759156408059,
|
||||||
|
"link": null,
|
||||||
|
"locked": false,
|
||||||
|
"text": "Libs/CleaningPipeline/sql_endpoint",
|
||||||
|
"fontSize": 18.64780255217528,
|
||||||
|
"fontFamily": 5,
|
||||||
|
"textAlign": "left",
|
||||||
|
"verticalAlign": "top",
|
||||||
|
"containerId": null,
|
||||||
|
"originalText": "Libs/CleaningPipeline/sql_endpoint",
|
||||||
|
"autoResize": true,
|
||||||
|
"lineHeight": 1.25
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "CgxCElJkKBtIHv-5WQrbo",
|
||||||
|
"type": "text",
|
||||||
|
"x": 195,
|
||||||
|
"y": 80.44259472749451,
|
||||||
|
"width": 403.64997665852184,
|
||||||
|
"height": 186.4780255217528,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "a4",
|
||||||
|
"roundness": null,
|
||||||
|
"seed": 1261951799,
|
||||||
|
"version": 507,
|
||||||
|
"versionNonce": 1922906999,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": null,
|
||||||
|
"updated": 1759156408059,
|
||||||
|
"link": null,
|
||||||
|
"locked": false,
|
||||||
|
"text": "Class SqlEndpoint:\n - sql_engine\n + movie_ids: list[int]\n\n #\n + get_abbreviated_dataset_by_movie_id\n\n",
|
||||||
|
"fontSize": 18.64780255217528,
|
||||||
|
"fontFamily": 5,
|
||||||
|
"textAlign": "left",
|
||||||
|
"verticalAlign": "top",
|
||||||
|
"containerId": null,
|
||||||
|
"originalText": "Class SqlEndpoint:\n - sql_engine\n + movie_ids: list[int]\n\n #\n + get_abbreviated_dataset_by_movie_id\n\n",
|
||||||
|
"autoResize": true,
|
||||||
|
"lineHeight": 1.25
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "line",
|
||||||
|
"version": 4979,
|
||||||
|
"versionNonce": 1473849177,
|
||||||
|
"isDeleted": false,
|
||||||
|
"id": "sYReMTdYblr-oJtYYJALU",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 1,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"angle": 0,
|
||||||
|
"x": -67.14432426259049,
|
||||||
|
"y": 87.19293561900287,
|
||||||
|
"strokeColor": "#000000",
|
||||||
|
"backgroundColor": "#a5d8ff",
|
||||||
|
"width": 77.09201683999922,
|
||||||
|
"height": 99.49948667804088,
|
||||||
|
"seed": 1263944119,
|
||||||
|
"groupIds": [
|
||||||
|
"9YkNe1yqnfZy9Z1JX2xr4",
|
||||||
|
"BDBCTrrhjbJynRAyuf3xJ"
|
||||||
|
],
|
||||||
|
"strokeSharpness": "round",
|
||||||
|
"boundElementIds": [],
|
||||||
|
"startBinding": null,
|
||||||
|
"endBinding": null,
|
||||||
|
"lastCommittedPoint": null,
|
||||||
|
"startArrowhead": null,
|
||||||
|
"endArrowhead": null,
|
||||||
|
"points": [
|
||||||
|
[
|
||||||
|
0,
|
||||||
|
0
|
||||||
|
],
|
||||||
|
[
|
||||||
|
0.2542098813493443,
|
||||||
|
75.20117273657175
|
||||||
|
],
|
||||||
|
[
|
||||||
|
0.011896425679918422,
|
||||||
|
83.76249969444815
|
||||||
|
],
|
||||||
|
[
|
||||||
|
3.970409367559332,
|
||||||
|
87.46174320643391
|
||||||
|
],
|
||||||
|
[
|
||||||
|
17.75573317066317,
|
||||||
|
90.59250103325854
|
||||||
|
],
|
||||||
|
[
|
||||||
|
41.05683533152865,
|
||||||
|
91.56737225214069
|
||||||
|
],
|
||||||
|
[
|
||||||
|
63.319497586673116,
|
||||||
|
90.01084754868091
|
||||||
|
],
|
||||||
|
[
|
||||||
|
75.14781395923075,
|
||||||
|
86.28844687220405
|
||||||
|
],
|
||||||
|
[
|
||||||
|
76.81603792670788,
|
||||||
|
83.15042405259751
|
||||||
|
],
|
||||||
|
[
|
||||||
|
77.05033394391478,
|
||||||
|
76.25776215104557
|
||||||
|
],
|
||||||
|
[
|
||||||
|
76.86643881413028,
|
||||||
|
6.3089586511537865
|
||||||
|
],
|
||||||
|
[
|
||||||
|
76.45188016352971,
|
||||||
|
-0.2999144698665015
|
||||||
|
],
|
||||||
|
[
|
||||||
|
71.50179495549581,
|
||||||
|
-3.9936571317850627
|
||||||
|
],
|
||||||
|
[
|
||||||
|
61.077971898861186,
|
||||||
|
-6.132877429442784
|
||||||
|
],
|
||||||
|
[
|
||||||
|
37.32348754161154,
|
||||||
|
-7.932114425900202
|
||||||
|
],
|
||||||
|
[
|
||||||
|
18.278415656797975,
|
||||||
|
-6.859225353587373
|
||||||
|
],
|
||||||
|
[
|
||||||
|
3.2995959613238286,
|
||||||
|
-3.2201165291205287
|
||||||
|
],
|
||||||
|
[
|
||||||
|
-0.04168289608444441,
|
||||||
|
-0.045185660461322996
|
||||||
|
],
|
||||||
|
[
|
||||||
|
0,
|
||||||
|
0
|
||||||
|
]
|
||||||
|
],
|
||||||
|
"index": "a6",
|
||||||
|
"frameId": null,
|
||||||
|
"roundness": {
|
||||||
|
"type": 2
|
||||||
|
},
|
||||||
|
"boundElements": [],
|
||||||
|
"updated": 1759158252997,
|
||||||
|
"link": null,
|
||||||
|
"locked": false
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "line",
|
||||||
|
"version": 2684,
|
||||||
|
"versionNonce": 952947769,
|
||||||
|
"isDeleted": false,
|
||||||
|
"id": "0S6dEWQVqKUVkP6Z5IX1l",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 1,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"angle": 0,
|
||||||
|
"x": -66.6203948243155,
|
||||||
|
"y": 144.31921927673278,
|
||||||
|
"strokeColor": "#000000",
|
||||||
|
"backgroundColor": "#a5d8ff",
|
||||||
|
"width": 77.17198221193564,
|
||||||
|
"height": 8.562348957853036,
|
||||||
|
"seed": 817033943,
|
||||||
|
"groupIds": [
|
||||||
|
"9YkNe1yqnfZy9Z1JX2xr4",
|
||||||
|
"BDBCTrrhjbJynRAyuf3xJ"
|
||||||
|
],
|
||||||
|
"strokeSharpness": "round",
|
||||||
|
"boundElementIds": [],
|
||||||
|
"startBinding": null,
|
||||||
|
"endBinding": null,
|
||||||
|
"lastCommittedPoint": null,
|
||||||
|
"startArrowhead": null,
|
||||||
|
"endArrowhead": null,
|
||||||
|
"points": [
|
||||||
|
[
|
||||||
|
0,
|
||||||
|
0
|
||||||
|
],
|
||||||
|
[
|
||||||
|
2.033150371639873,
|
||||||
|
3.413095389435587
|
||||||
|
],
|
||||||
|
[
|
||||||
|
10.801287372573954,
|
||||||
|
6.276651055277943
|
||||||
|
],
|
||||||
|
[
|
||||||
|
22.468666942209353,
|
||||||
|
8.010803051612635
|
||||||
|
],
|
||||||
|
[
|
||||||
|
40.747074201802775,
|
||||||
|
8.168828515515864
|
||||||
|
],
|
||||||
|
[
|
||||||
|
62.077348233027564,
|
||||||
|
7.0647721921469495
|
||||||
|
],
|
||||||
|
[
|
||||||
|
74.53446931782398,
|
||||||
|
3.04824021069218
|
||||||
|
],
|
||||||
|
[
|
||||||
|
77.17198221193564,
|
||||||
|
-0.3935204423371723
|
||||||
|
]
|
||||||
|
],
|
||||||
|
"index": "a7",
|
||||||
|
"frameId": null,
|
||||||
|
"roundness": {
|
||||||
|
"type": 2
|
||||||
|
},
|
||||||
|
"boundElements": [],
|
||||||
|
"updated": 1759158252997,
|
||||||
|
"link": null,
|
||||||
|
"locked": false
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "line",
|
||||||
|
"version": 2770,
|
||||||
|
"versionNonce": 477619481,
|
||||||
|
"isDeleted": false,
|
||||||
|
"id": "szGLND7J0nVOvRkNXX9AS",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 1,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"angle": 0,
|
||||||
|
"x": -67.65225214681931,
|
||||||
|
"y": 115.35516394150972,
|
||||||
|
"strokeColor": "#000000",
|
||||||
|
"backgroundColor": "#a5d8ff",
|
||||||
|
"width": 77.17198221193564,
|
||||||
|
"height": 8.562348957853036,
|
||||||
|
"seed": 1704755191,
|
||||||
|
"groupIds": [
|
||||||
|
"9YkNe1yqnfZy9Z1JX2xr4",
|
||||||
|
"BDBCTrrhjbJynRAyuf3xJ"
|
||||||
|
],
|
||||||
|
"strokeSharpness": "round",
|
||||||
|
"boundElementIds": [],
|
||||||
|
"startBinding": null,
|
||||||
|
"endBinding": null,
|
||||||
|
"lastCommittedPoint": null,
|
||||||
|
"startArrowhead": null,
|
||||||
|
"endArrowhead": null,
|
||||||
|
"points": [
|
||||||
|
[
|
||||||
|
0,
|
||||||
|
0
|
||||||
|
],
|
||||||
|
[
|
||||||
|
2.033150371639873,
|
||||||
|
3.413095389435587
|
||||||
|
],
|
||||||
|
[
|
||||||
|
10.801287372573954,
|
||||||
|
6.276651055277943
|
||||||
|
],
|
||||||
|
[
|
||||||
|
22.468666942209353,
|
||||||
|
8.010803051612635
|
||||||
|
],
|
||||||
|
[
|
||||||
|
40.747074201802775,
|
||||||
|
8.168828515515864
|
||||||
|
],
|
||||||
|
[
|
||||||
|
62.077348233027564,
|
||||||
|
7.0647721921469495
|
||||||
|
],
|
||||||
|
[
|
||||||
|
74.53446931782398,
|
||||||
|
3.04824021069218
|
||||||
|
],
|
||||||
|
[
|
||||||
|
77.17198221193564,
|
||||||
|
-0.3935204423371723
|
||||||
|
]
|
||||||
|
],
|
||||||
|
"index": "a8",
|
||||||
|
"frameId": null,
|
||||||
|
"roundness": {
|
||||||
|
"type": 2
|
||||||
|
},
|
||||||
|
"boundElements": [],
|
||||||
|
"updated": 1759158252997,
|
||||||
|
"link": null,
|
||||||
|
"locked": false
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "ellipse",
|
||||||
|
"version": 5767,
|
||||||
|
"versionNonce": 2119031289,
|
||||||
|
"isDeleted": false,
|
||||||
|
"id": "O3t2uGktJlDd1_OX_bpV4",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 1,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"angle": 0,
|
||||||
|
"x": -68.71020112890136,
|
||||||
|
"y": 80.06066699332126,
|
||||||
|
"strokeColor": "#000000",
|
||||||
|
"backgroundColor": "#a5d8ff",
|
||||||
|
"width": 76.59753601865496,
|
||||||
|
"height": 15.49127539284798,
|
||||||
|
"seed": 471296279,
|
||||||
|
"groupIds": [
|
||||||
|
"9YkNe1yqnfZy9Z1JX2xr4",
|
||||||
|
"BDBCTrrhjbJynRAyuf3xJ"
|
||||||
|
],
|
||||||
|
"strokeSharpness": "sharp",
|
||||||
|
"boundElementIds": [
|
||||||
|
"bxuMGTzXLn7H-uBCptINx"
|
||||||
|
],
|
||||||
|
"index": "a9",
|
||||||
|
"frameId": null,
|
||||||
|
"roundness": null,
|
||||||
|
"boundElements": [],
|
||||||
|
"updated": 1759158252997,
|
||||||
|
"link": null,
|
||||||
|
"locked": false
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "ellipse",
|
||||||
|
"version": 1177,
|
||||||
|
"versionNonce": 525480665,
|
||||||
|
"isDeleted": false,
|
||||||
|
"id": "_SzKlOBOvJgBg7FX0JTTM",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 1,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"angle": 0,
|
||||||
|
"x": -32.218214023678854,
|
||||||
|
"y": 104.53733467322485,
|
||||||
|
"strokeColor": "#000000",
|
||||||
|
"backgroundColor": "#228be6",
|
||||||
|
"width": 11.226103154161754,
|
||||||
|
"height": 12.183758484455605,
|
||||||
|
"seed": 1368927799,
|
||||||
|
"groupIds": [
|
||||||
|
"9YkNe1yqnfZy9Z1JX2xr4",
|
||||||
|
"BDBCTrrhjbJynRAyuf3xJ"
|
||||||
|
],
|
||||||
|
"strokeSharpness": "sharp",
|
||||||
|
"boundElementIds": [],
|
||||||
|
"index": "aA",
|
||||||
|
"frameId": null,
|
||||||
|
"roundness": null,
|
||||||
|
"boundElements": [],
|
||||||
|
"updated": 1759158252997,
|
||||||
|
"link": null,
|
||||||
|
"locked": false
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "ellipse",
|
||||||
|
"version": 1465,
|
||||||
|
"versionNonce": 1410887609,
|
||||||
|
"isDeleted": false,
|
||||||
|
"id": "oJMl2Kxa3SPaiAY0kxo7A",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 1,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"angle": 0,
|
||||||
|
"x": -31.867072239745255,
|
||||||
|
"y": 130.75394896028996,
|
||||||
|
"strokeColor": "#000000",
|
||||||
|
"backgroundColor": "#228be6",
|
||||||
|
"width": 11.226103154161754,
|
||||||
|
"height": 12.183758484455605,
|
||||||
|
"seed": 1627606871,
|
||||||
|
"groupIds": [
|
||||||
|
"9YkNe1yqnfZy9Z1JX2xr4",
|
||||||
|
"BDBCTrrhjbJynRAyuf3xJ"
|
||||||
|
],
|
||||||
|
"strokeSharpness": "sharp",
|
||||||
|
"boundElementIds": [],
|
||||||
|
"index": "aB",
|
||||||
|
"frameId": null,
|
||||||
|
"roundness": null,
|
||||||
|
"boundElements": [],
|
||||||
|
"updated": 1759158252997,
|
||||||
|
"link": null,
|
||||||
|
"locked": false
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "ellipse",
|
||||||
|
"version": 1348,
|
||||||
|
"versionNonce": 314839193,
|
||||||
|
"isDeleted": false,
|
||||||
|
"id": "fB6pJBSMA-pRHrpgYKaLL",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 1,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"angle": 6.239590202363168,
|
||||||
|
"x": -31.218214023678854,
|
||||||
|
"y": 159.52267553159635,
|
||||||
|
"strokeColor": "#000000",
|
||||||
|
"backgroundColor": "#228be6",
|
||||||
|
"width": 11.226103154161754,
|
||||||
|
"height": 12.183758484455605,
|
||||||
|
"seed": 1420643447,
|
||||||
|
"groupIds": [
|
||||||
|
"9YkNe1yqnfZy9Z1JX2xr4",
|
||||||
|
"BDBCTrrhjbJynRAyuf3xJ"
|
||||||
|
],
|
||||||
|
"strokeSharpness": "sharp",
|
||||||
|
"boundElementIds": [],
|
||||||
|
"index": "aC",
|
||||||
|
"frameId": null,
|
||||||
|
"roundness": null,
|
||||||
|
"boundElements": [],
|
||||||
|
"updated": 1759158252997,
|
||||||
|
"link": null,
|
||||||
|
"locked": false
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "text",
|
||||||
|
"version": 846,
|
||||||
|
"versionNonce": 1091081593,
|
||||||
|
"isDeleted": false,
|
||||||
|
"id": "9gZ3Yy1MeP9kEOTLODqLG",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 1,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"angle": 0,
|
||||||
|
"x": -76.81018163712321,
|
||||||
|
"y": 181.11281713043917,
|
||||||
|
"strokeColor": "#000000",
|
||||||
|
"backgroundColor": "#a5d8ff",
|
||||||
|
"width": 95.63072204589844,
|
||||||
|
"height": 23.595161071904883,
|
||||||
|
"seed": 2019206551,
|
||||||
|
"groupIds": [
|
||||||
|
"BDBCTrrhjbJynRAyuf3xJ"
|
||||||
|
],
|
||||||
|
"strokeSharpness": "sharp",
|
||||||
|
"boundElementIds": [],
|
||||||
|
"fontSize": 17.4778970902999,
|
||||||
|
"fontFamily": 1,
|
||||||
|
"text": "dataset.db",
|
||||||
|
"baseline": 16.595161071904883,
|
||||||
|
"textAlign": "center",
|
||||||
|
"verticalAlign": "top",
|
||||||
|
"index": "aD",
|
||||||
|
"frameId": null,
|
||||||
|
"roundness": null,
|
||||||
|
"boundElements": [],
|
||||||
|
"updated": 1759158252997,
|
||||||
|
"link": null,
|
||||||
|
"locked": false,
|
||||||
|
"containerId": null,
|
||||||
|
"originalText": "dataset.db",
|
||||||
|
"autoResize": true,
|
||||||
|
"lineHeight": 1.350000000000001
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "3eOw20xMhpB5jf_RMG24P",
|
||||||
|
"type": "text",
|
||||||
|
"x": 1131.3333333333335,
|
||||||
|
"y": 31.333333333333428,
|
||||||
|
"width": 508.3333333333333,
|
||||||
|
"height": 550,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "aE",
|
||||||
|
"roundness": null,
|
||||||
|
"seed": 1535658041,
|
||||||
|
"version": 821,
|
||||||
|
"versionNonce": 1630266809,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": null,
|
||||||
|
"updated": 1759157181677,
|
||||||
|
"link": null,
|
||||||
|
"locked": false,
|
||||||
|
"text": "Class PipelineApplier\n - movie_frequence_filter : pd.DataFrame()\n - rel_Frequence_Filter : pd.DataFrame()\n - rel_banned_list: list[str]\n\n + generate_movie_frequency_filter()\n + generate_rel_frequency_filter()\n + generate_list_relationship_filter()\n \n + filter_by_movie_frequency()\n + filter_by_relationship_frequency()\n + delete_relationship_by_list_filter()\n + delete_relationship_by_str()\n\n + drop_na() \n\n + rdf_add_special_token()\n + group_triple_by_movie()\n + build_by_movie()\n # static\n + build_triple()\n + build_incomplete_triple()",
|
||||||
|
"fontSize": 20,
|
||||||
|
"fontFamily": 5,
|
||||||
|
"textAlign": "left",
|
||||||
|
"verticalAlign": "top",
|
||||||
|
"containerId": null,
|
||||||
|
"originalText": "Class PipelineApplier\n - movie_frequence_filter : pd.DataFrame()\n - rel_Frequence_Filter : pd.DataFrame()\n - rel_banned_list: list[str]\n\n + generate_movie_frequency_filter()\n + generate_rel_frequency_filter()\n + generate_list_relationship_filter()\n \n + filter_by_movie_frequency()\n + filter_by_relationship_frequency()\n + delete_relationship_by_list_filter()\n + delete_relationship_by_str()\n\n + drop_na() \n\n + rdf_add_special_token()\n + group_triple_by_movie()\n + build_by_movie()\n # static\n + build_triple()\n + build_incomplete_triple()",
|
||||||
|
"autoResize": false,
|
||||||
|
"lineHeight": 1.25
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "Fbl1gpb5r7QrdRauGUWm2",
|
||||||
|
"type": "text",
|
||||||
|
"x": 158.23809523809535,
|
||||||
|
"y": 502.52380952380935,
|
||||||
|
"width": 484.2857142857143,
|
||||||
|
"height": 500,
|
||||||
|
"angle": 0,
|
||||||
|
"strokeColor": "#1e1e1e",
|
||||||
|
"backgroundColor": "transparent",
|
||||||
|
"fillStyle": "solid",
|
||||||
|
"strokeWidth": 2,
|
||||||
|
"strokeStyle": "solid",
|
||||||
|
"roughness": 1,
|
||||||
|
"opacity": 100,
|
||||||
|
"groupIds": [],
|
||||||
|
"frameId": null,
|
||||||
|
"index": "aF",
|
||||||
|
"roundness": null,
|
||||||
|
"seed": 2066618807,
|
||||||
|
"version": 552,
|
||||||
|
"versionNonce": 1269344823,
|
||||||
|
"isDeleted": false,
|
||||||
|
"boundElements": null,
|
||||||
|
"updated": 1759158199532,
|
||||||
|
"link": null,
|
||||||
|
"locked": false,
|
||||||
|
"text": "Class Pipeline\n - sql_endpoint: SqlEndpoint()\n\n - task_rdf_mask_file_handler:\n - task_bpe_corpus_file_handler:\n - task_rdf_text_file_handler:\n - task_rdf_completation_file_handler:\n\n - Filter_applier : PipelineApplier()\n\n #\n - get_cleaned_movie_rows()\n \n + execute_task_bpe_corpus()\n + execute_task_rdf_mask()\n + execute_task_rdf_text()\n + execute_task_rdf_completation()\n + execute_all_task()\n\n + use_toy_dataset()",
|
||||||
|
"fontSize": 20,
|
||||||
|
"fontFamily": 5,
|
||||||
|
"textAlign": "left",
|
||||||
|
"verticalAlign": "top",
|
||||||
|
"containerId": null,
|
||||||
|
"originalText": "Class Pipeline\n - sql_endpoint: SqlEndpoint()\n\n - task_rdf_mask_file_handler:\n - task_bpe_corpus_file_handler:\n - task_rdf_text_file_handler:\n - task_rdf_completation_file_handler:\n\n - Filter_applier : PipelineApplier()\n\n #\n - get_cleaned_movie_rows()\n \n + execute_task_bpe_corpus()\n + execute_task_rdf_mask()\n + execute_task_rdf_text()\n + execute_task_rdf_completation()\n + execute_all_task()\n\n + use_toy_dataset()",
|
||||||
|
"autoResize": false,
|
||||||
|
"lineHeight": 1.25
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"appState": {
|
||||||
|
"gridSize": 20,
|
||||||
|
"gridStep": 5,
|
||||||
|
"gridModeEnabled": false,
|
||||||
|
"viewBackgroundColor": "#ffffff"
|
||||||
|
},
|
||||||
|
"files": {}
|
||||||
|
}
|
||||||
@@ -15,3 +15,4 @@ tzdata==2025.2
|
|||||||
urllib3==2.5.0
|
urllib3==2.5.0
|
||||||
wheel==0.45.1
|
wheel==0.45.1
|
||||||
Wikipedia-API==0.8.1
|
Wikipedia-API==0.8.1
|
||||||
|
SQLAlchemy
|
||||||
|
|||||||
Reference in New Issue
Block a user