Compare commits
66 Commits
main
...
dev.splitt
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
25f401b577 | ||
|
|
14c5ade230 | ||
| 4c9c51f902 | |||
|
|
63c1a4a160 | ||
|
|
51114af853 | ||
|
|
3a6dca0681 | ||
|
|
346098d2b7 | ||
|
|
64f9b41378 | ||
|
|
ac1ed42c49 | ||
|
|
edd01a2c83 | ||
|
|
5aa9e3fcf3 | ||
|
|
0970cabf92 | ||
|
|
a26d92750f | ||
|
|
34c4782232 | ||
|
|
c5439533e6 | ||
|
|
8819b8e87f | ||
|
|
1076dc8aa6 | ||
|
|
3d15e03b09 | ||
|
|
0ee2ec6fcd | ||
|
|
95cfa5486c | ||
|
|
0d30e90ee0 | ||
|
|
faaba17a98 | ||
|
|
854e5f1d98 | ||
|
|
242d7f674f | ||
|
|
de8c2afceb | ||
|
|
f89dffff75 | ||
|
|
e39bad8348 | ||
|
|
7a1a221017 | ||
|
|
fafe6ae0f9 | ||
|
|
e32444df75 | ||
|
|
b74b7ac4f0 | ||
|
|
22134391d9 | ||
|
|
82c9023849 | ||
|
|
00b87e01ea | ||
|
|
ce3d4bf6c5 | ||
|
|
c415b175a0 | ||
|
|
ec81ea7930 | ||
|
|
4bb03f86b3 | ||
|
|
e5f201f3db | ||
|
|
1c715dc569 | ||
|
|
6686b47328 | ||
|
|
9a5a7d84fd | ||
|
|
9678ece9c0 | ||
|
|
67bcd732b5 | ||
|
|
1a4f900500 | ||
|
|
ca8729b67c | ||
|
|
9dbffc52ed | ||
|
|
b7f504942a | ||
|
|
7f0c5ce8d3 | ||
|
|
9838e287a4 | ||
|
|
ca6143ea3c | ||
|
|
16e7ab4d9f | ||
|
|
28723ab662 | ||
|
|
3e59efcf33 | ||
|
|
7c04309cc1 | ||
|
|
db87295890 | ||
|
|
61568200a8 | ||
|
|
8df2736b97 | ||
|
|
eb5b7f629a | ||
|
|
79232b391e | ||
|
|
72eb937b47 | ||
|
|
cececa14ce | ||
|
|
2487d44abd | ||
|
|
553b86cac2 | ||
|
|
12bd781fd3 | ||
|
|
463f4907b8 |
1
.gitattributes
vendored
1
.gitattributes
vendored
@ -1,2 +1,3 @@
|
||||
Exam/Deep_Learning_2025_VIII.pdf filter=lfs diff=lfs merge=lfs -text
|
||||
Assets/** filter=lfs diff=lfs merge=lfs -text
|
||||
Assets/Dataset/1-hop/dataset.csv filter=lfs diff=lfs merge=lfs -text
|
||||
|
||||
6
.gitignore
vendored
6
.gitignore
vendored
@ -189,7 +189,8 @@ ipython_config.py
|
||||
.LSOverride
|
||||
|
||||
# Icon must end with two \r
|
||||
Icon
|
||||
Icon
|
||||
|
||||
|
||||
# Thumbnails
|
||||
._*
|
||||
@ -251,3 +252,6 @@ $RECYCLE.BIN/
|
||||
# .nfs files are created when an open file is removed but is still being accessed
|
||||
.nfs*
|
||||
|
||||
# ---> Custom
|
||||
**/Tmp/**
|
||||
!**/.gitkeep
|
||||
|
||||
14
.vscode/extensions.json
vendored
Normal file
14
.vscode/extensions.json
vendored
Normal file
@ -0,0 +1,14 @@
|
||||
{
|
||||
"recommendations": [
|
||||
"bierner.github-markdown-preview",
|
||||
"bierner.markdown-checkbox",
|
||||
"bierner.markdown-emoji",
|
||||
"bierner.markdown-footnotes",
|
||||
"bierner.markdown-mermaid",
|
||||
"bierner.markdown-preview-github-styles",
|
||||
"bierner.markdown-yaml-preamble",
|
||||
"davidanson.vscode-markdownlint",
|
||||
"kejun.markdown-alert",
|
||||
"yzhang.markdown-all-in-one"
|
||||
]
|
||||
}
|
||||
BIN
Assets/Dataset/1-hop/dataset.csv
(Stored with Git LFS)
Normal file
BIN
Assets/Dataset/1-hop/dataset.csv
(Stored with Git LFS)
Normal file
Binary file not shown.
|
BIN
Assets/Dataset/1-hop/movie-pageid.csv
(Stored with Git LFS)
Normal file
BIN
Assets/Dataset/1-hop/movie-pageid.csv
(Stored with Git LFS)
Normal file
Binary file not shown.
|
BIN
Assets/Dataset/1-hop/movies.csv
(Stored with Git LFS)
Normal file
BIN
Assets/Dataset/1-hop/movies.csv
(Stored with Git LFS)
Normal file
Binary file not shown.
|
BIN
Assets/Dataset/1-hop/reverse.csv
(Stored with Git LFS)
Normal file
BIN
Assets/Dataset/1-hop/reverse.csv
(Stored with Git LFS)
Normal file
Binary file not shown.
|
BIN
Assets/Dataset/1-hop/wikipedia-movie.csv
(Stored with Git LFS)
Normal file
BIN
Assets/Dataset/1-hop/wikipedia-movie.csv
(Stored with Git LFS)
Normal file
Binary file not shown.
|
BIN
Assets/Dataset/1-hop/wikipedia-summary.csv
(Stored with Git LFS)
Normal file
BIN
Assets/Dataset/1-hop/wikipedia-summary.csv
(Stored with Git LFS)
Normal file
Binary file not shown.
|
BIN
Assets/Dataset/DatawareHouse/dataset.db
(Stored with Git LFS)
Normal file
BIN
Assets/Dataset/DatawareHouse/dataset.db
(Stored with Git LFS)
Normal file
Binary file not shown.
0
Assets/Dataset/Tmp/.gitkeep
Normal file
0
Assets/Dataset/Tmp/.gitkeep
Normal file
27
README.md
27
README.md
@ -1,3 +1,28 @@
|
||||
# NanoSocrates
|
||||
|
||||
This is the work project for the DeepLearning exam of 16th September 2025
|
||||
This is the work project for the DeepLearning exam of 16th September 2025
|
||||
|
||||
## Index
|
||||
|
||||
- [Resources](./docs/RESOURCES.md)
|
||||
|
||||
## Setup
|
||||
|
||||
Create and activate you Conda enviroment with:
|
||||
|
||||
conda env create -f environment.yaml
|
||||
conda activate deep_learning
|
||||
|
||||
Now install dependencies on pip:
|
||||
|
||||
pip install -r requirements.txt
|
||||
|
||||
## TroubleShooting
|
||||
|
||||
Sometimes when uploading really large batch of data, git can stop the uploads thanks to the timeout.
|
||||
The solution is to locally change its settings:
|
||||
|
||||
git config lfs.dialtimeout 3600
|
||||
git config lfs.activitytimeout 3600
|
||||
|
||||
for clearance check the link: https://stackoverflow.com/questions/58961697/i-o-timeout-when-pushing-to-a-git-reporsitory
|
||||
139
Scripts/DataCleaning/path_splitter_tree.py
Normal file
139
Scripts/DataCleaning/path_splitter_tree.py
Normal file
@ -0,0 +1,139 @@
|
||||
import argparse
|
||||
import csv
|
||||
import sys
|
||||
from typing import Self
|
||||
|
||||
|
||||
class ProgramArgs:
|
||||
|
||||
def __init__(self, file: str, output: str, treshold: int):
|
||||
self.file = file
|
||||
self.output = output
|
||||
self.treshold = treshold
|
||||
|
||||
|
||||
class Node:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
name: str,
|
||||
quantity: int = 0,
|
||||
):
|
||||
self.name = name
|
||||
self.quantity = quantity
|
||||
self.children: dict[str, Node] = {}
|
||||
|
||||
@property
|
||||
def is_leaf(self):
|
||||
return len(self.children) == 0
|
||||
|
||||
def append_child(self, child: list[str]):
|
||||
|
||||
# print(child)
|
||||
KEY = child[0]
|
||||
|
||||
if not self.children.get(KEY):
|
||||
self.children[KEY] = Node(KEY, 0)
|
||||
|
||||
CHILD = self.children[KEY]
|
||||
self.quantity += 1
|
||||
|
||||
if len(child) == 1:
|
||||
return
|
||||
|
||||
new_children = child[1:]
|
||||
|
||||
CHILD.append_child(new_children)
|
||||
|
||||
def __str__(self):
|
||||
return f"{self.name}/ - {self.quantity}"
|
||||
|
||||
|
||||
def get_args(args: list[str]) -> ProgramArgs:
|
||||
|
||||
PARSER = argparse.ArgumentParser()
|
||||
PARSER.add_argument("--input-file", "-i", required=True, type=str)
|
||||
PARSER.add_argument("--output-file", "-o", required=True, type=str)
|
||||
PARSER.add_argument("--treshold", "-t", type=int, default=1)
|
||||
parsed_args, _ = PARSER.parse_known_args(args)
|
||||
|
||||
# print(parsed_args.input_file)
|
||||
|
||||
return ProgramArgs(parsed_args.input_file,parsed_args.output_file, parsed_args.treshold) # type ignore
|
||||
|
||||
|
||||
def get_debug_args() -> ProgramArgs:
|
||||
|
||||
FILE = "./Assets/Dataset/Tmp/reverse-rel.txt"
|
||||
TRESHOLD = 1
|
||||
|
||||
return ProgramArgs(
|
||||
FILE,
|
||||
TRESHOLD
|
||||
)
|
||||
|
||||
|
||||
def tree_like(file: str, out: str):
|
||||
|
||||
INDENTATION = " "
|
||||
|
||||
properties: dict[str, Node] = {}
|
||||
|
||||
properties["pure"] = Node("pure", 0)
|
||||
properties["URI"] = Node("uri", 0)
|
||||
|
||||
FILE = open(file, "r", encoding="utf-8")
|
||||
|
||||
for row in FILE:
|
||||
|
||||
sections = row.split("/")
|
||||
sections = list(filter(lambda item: item != "", sections))
|
||||
|
||||
# print(sections)
|
||||
|
||||
if sections[0] != "http:" and sections[0] != "https:":
|
||||
properties["pure"].append_child(sections)
|
||||
continue
|
||||
|
||||
properties["URI"].append_child(sections)
|
||||
|
||||
FILE.close()
|
||||
|
||||
stack: list[tuple[Node, int]] = []
|
||||
|
||||
for _, item in properties.items():
|
||||
stack.append((item, 0))
|
||||
|
||||
OUT = open(out, mode="w", encoding="utf-8")
|
||||
|
||||
while len(stack) > 0:
|
||||
|
||||
LAST_ITEM = stack.pop()
|
||||
|
||||
NODE: Node = LAST_ITEM[0]
|
||||
DEPTH: int = LAST_ITEM[1]
|
||||
|
||||
INDENT: str = INDENTATION * DEPTH
|
||||
|
||||
if NODE.quantity < ARGS.treshold:
|
||||
continue
|
||||
|
||||
OUT.write(f"{INDENT}- {NODE}\n")
|
||||
|
||||
if NODE.is_leaf:
|
||||
continue
|
||||
|
||||
CHILDREN = []
|
||||
|
||||
for _, child in NODE.children.items():
|
||||
CHILDREN.append((child, DEPTH + 1))
|
||||
|
||||
stack.extend(CHILDREN)
|
||||
|
||||
OUT.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
ARGS = get_args(sys.argv)
|
||||
# ARGS = get_debug_args()
|
||||
tree_like(ARGS.file, ARGS.output)
|
||||
53
Scripts/DataGathering/analysis.py
Normal file
53
Scripts/DataGathering/analysis.py
Normal file
@ -0,0 +1,53 @@
|
||||
import argparse
|
||||
import sys
|
||||
import pandas as pd
|
||||
|
||||
|
||||
class ProgramArgs:
|
||||
|
||||
def __init__(
|
||||
self, input_file: str, column: str, output_file: str, count: bool
|
||||
) -> None:
|
||||
self.input_file = input_file
|
||||
self.column = column
|
||||
self.output_file = output_file
|
||||
self.count = count
|
||||
|
||||
|
||||
def get_args(args: list[str]) -> ProgramArgs:
|
||||
|
||||
PARSER = argparse.ArgumentParser()
|
||||
PARSER.add_argument("--input-file", "--input", "-i", required=True, type=str)
|
||||
PARSER.add_argument("--output-file", "--output", "-o", required=True, type=str)
|
||||
PARSER.add_argument("--column", "--col", required=True, type=str)
|
||||
PARSER.add_argument(
|
||||
"--count", "-c", action="store_const", const=True, default=False
|
||||
)
|
||||
parsed_args, _ = PARSER.parse_known_args(args)
|
||||
|
||||
return ProgramArgs(
|
||||
parsed_args.input_file,
|
||||
parsed_args.column,
|
||||
parsed_args.output_file,
|
||||
parsed_args.count,
|
||||
) # type ignore
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
ARGS = get_args(sys.argv)
|
||||
|
||||
OUTPUT_FILE = open(ARGS.output_file, "w+", encoding="utf-8")
|
||||
|
||||
# Load the CSV
|
||||
df = pd.read_csv(ARGS.input_file)
|
||||
|
||||
# Count occurrences of each unique last part
|
||||
item_counts = df[ARGS.column].value_counts()
|
||||
|
||||
# Print the counts
|
||||
for item, count in item_counts.items():
|
||||
|
||||
if ARGS.count:
|
||||
OUTPUT_FILE.write(f"{item}: {count}\n")
|
||||
else:
|
||||
OUTPUT_FILE.write(f"{item}\n")
|
||||
146
Scripts/DataGathering/fetchdata.py
Normal file
146
Scripts/DataGathering/fetchdata.py
Normal file
@ -0,0 +1,146 @@
|
||||
import argparse
|
||||
from math import floor
|
||||
import sys
|
||||
from time import sleep
|
||||
import SPARQLWrapper
|
||||
|
||||
|
||||
class ProgramData:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
local_url,
|
||||
query_url,
|
||||
sparql_url,
|
||||
output_type,
|
||||
initial_offset,
|
||||
timeout,
|
||||
limit,
|
||||
max_pages,
|
||||
verbosity_level,
|
||||
) -> None:
|
||||
|
||||
self.local_url = local_url
|
||||
self.query_url = query_url
|
||||
self.sparql_url = sparql_url
|
||||
self.output_type = output_type
|
||||
self.initial_offset = initial_offset
|
||||
self.timeout = timeout
|
||||
self.limit = limit
|
||||
self.max_pages = max_pages
|
||||
self.verbosity_level = verbosity_level
|
||||
|
||||
@property
|
||||
def offset(self):
|
||||
return self.limit
|
||||
|
||||
@property
|
||||
def query(self):
|
||||
|
||||
with open(self.query_url, "r") as file:
|
||||
return file.read()
|
||||
|
||||
|
||||
DBPEDIA_URL = "https://dbpedia.org/sparql"
|
||||
TYPE = SPARQLWrapper.CSV
|
||||
TIMEOUT_SECONDS = 1.5
|
||||
LIMIT = int(1E4)
|
||||
INITIAL_OFFSET = 0
|
||||
MAX_PAGES = int(1E9)
|
||||
|
||||
|
||||
def gather_cli_args(args: list[str]) -> ProgramData:
|
||||
|
||||
# TODO: Add argument for type
|
||||
PARSER = argparse.ArgumentParser("sparql data fetcher")
|
||||
PARSER.add_argument("--file-path", "--file", "--output", "-o", required=True, type=str)
|
||||
PARSER.add_argument("--query-file", "--query", "-q", required=True, type=str)
|
||||
PARSER.add_argument("--url", type=str, default=DBPEDIA_URL)
|
||||
PARSER.add_argument("--limit", type=int, default=LIMIT)
|
||||
PARSER.add_argument("--timeout", type=float, default=TIMEOUT_SECONDS)
|
||||
PARSER.add_argument("--offset", type=int, default=INITIAL_OFFSET)
|
||||
PARSER.add_argument("--max-pages", type=int, default=MAX_PAGES)
|
||||
PARSER.add_argument("--verbose", "-v", action="count", default=0)
|
||||
|
||||
parsed_args, _ = PARSER.parse_known_args(args)
|
||||
|
||||
return ProgramData(
|
||||
parsed_args.file_path,
|
||||
parsed_args.query_file,
|
||||
parsed_args.url,
|
||||
SPARQLWrapper.CSV,
|
||||
parsed_args.offset,
|
||||
parsed_args.timeout,
|
||||
parsed_args.limit,
|
||||
parsed_args.max_pages,
|
||||
parsed_args.verbose
|
||||
)
|
||||
# type: ignore
|
||||
|
||||
|
||||
def fetch_data(DATA: ProgramData):
|
||||
|
||||
# Take correction of page into account
|
||||
page = int(floor(DATA.initial_offset / DATA.limit)) - 1
|
||||
exit = False
|
||||
|
||||
while not exit:
|
||||
|
||||
print(f"Starting to get page {page}")
|
||||
|
||||
CURRENT_OFFSET = int(DATA.offset + (page * DATA.limit))
|
||||
sparql = SPARQLWrapper.SPARQLWrapper(DATA.sparql_url)
|
||||
|
||||
sparql.setReturnFormat(TYPE)
|
||||
|
||||
CURRENT_PAGE_QUERY = "\n".join([
|
||||
DATA.query,
|
||||
f"LIMIT {LIMIT}",
|
||||
f"OFFSET {CURRENT_OFFSET}"
|
||||
])
|
||||
|
||||
print(f"\nCurrent Query:\n{CURRENT_PAGE_QUERY}\n")
|
||||
|
||||
sparql.setQuery(CURRENT_PAGE_QUERY)
|
||||
|
||||
try:
|
||||
res = sparql.queryAndConvert()
|
||||
text = ""
|
||||
|
||||
if type(res) == bytes:
|
||||
|
||||
initial_offset = 0
|
||||
|
||||
if page != 0:
|
||||
initial_offset = 1
|
||||
|
||||
lines = res.decode("utf-8", "ignore").split("\n")
|
||||
text = "\n".join(lines[initial_offset:])
|
||||
|
||||
if text == "":
|
||||
exit = True
|
||||
continue
|
||||
|
||||
with open(DATA.local_url, "a+", encoding="utf-8") as dataset:
|
||||
|
||||
print(f"Writing page {page} on {DATA.local_url}")
|
||||
dataset.write(
|
||||
text
|
||||
)
|
||||
|
||||
except Exception as ex:
|
||||
print(f"Something went wrong during page {page}:\n\t{ex}")
|
||||
|
||||
print(f"Sleeping for {TIMEOUT_SECONDS}")
|
||||
|
||||
page += 1
|
||||
|
||||
if page == MAX_PAGES - 1:
|
||||
exit = True
|
||||
|
||||
sleep(TIMEOUT_SECONDS)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
DATA = gather_cli_args(sys.argv)
|
||||
fetch_data(DATA)
|
||||
154
Scripts/DataGathering/wikipedia_gathering.py
Normal file
154
Scripts/DataGathering/wikipedia_gathering.py
Normal file
@ -0,0 +1,154 @@
|
||||
from pathlib import Path
|
||||
import pandas as pd
|
||||
|
||||
import csv
|
||||
import time
|
||||
import requests
|
||||
|
||||
input_csv = "./Assets/Dataset/1-hop/movie-pageid.csv"
|
||||
output_csv = "./Assets/Dataset/Tmp/wikipedia-summary.csv"
|
||||
|
||||
|
||||
sess = requests.Session()
|
||||
|
||||
CHUNK = 20
|
||||
|
||||
|
||||
# Function to get clean full text from Wikipedia PageID
|
||||
def get_clean_text(pageIDS: list[str]):
|
||||
|
||||
parsing_time = 0
|
||||
start_full = time.time()
|
||||
API_URL = "https://en.wikipedia.org/w/api.php"
|
||||
headers = {
|
||||
"User-Agent": "CoolBot/0.0"
|
||||
""
|
||||
" (https://example.org/coolbot/; coolbot@example.org)"
|
||||
}
|
||||
|
||||
ids = "|".join(pageIDS)
|
||||
|
||||
start_fetch = time.time()
|
||||
res = sess.get(headers=headers, url=f"{API_URL}?action=query&pageids={ids}&prop=extracts&exintro=1&explaintext=1&format=json")
|
||||
end_fetch = time.time()
|
||||
fetch_time = end_fetch - start_fetch
|
||||
print(f"Time elapsed FETCH: {fetch_time} seconds")
|
||||
|
||||
data = res.json()
|
||||
|
||||
|
||||
abstracts = {}
|
||||
# Make sure 'query' and the page exist
|
||||
SKIPPED = 0
|
||||
if "query" in data and "pages" in data["query"]:
|
||||
for pageID in pageIDS:
|
||||
if pageID in data["query"]["pages"]:
|
||||
page = data["query"]["pages"][pageID]
|
||||
extract: str = page.get("extract")
|
||||
|
||||
if extract:
|
||||
print(f"Entry FOUND for pageID {pageID}")
|
||||
start_parse = time.time()
|
||||
extract = extract.strip()
|
||||
extract = extract.replace("\n", "")
|
||||
end_parse = time.time()
|
||||
parsing_time = end_parse - start_parse
|
||||
print(f"Time elapsed PARSE: {parsing_time} seconds")
|
||||
abstracts[pageID] = extract
|
||||
else:
|
||||
SKIPPED += 1
|
||||
print(f"Entry MISSING for pageID {pageID}")
|
||||
else:
|
||||
SKIPPED += 1
|
||||
print(f"Page MISSING for pageID {pageID}")
|
||||
|
||||
print(f"Chunk done - Skipped {SKIPPED}")
|
||||
end_full = time.time()
|
||||
|
||||
print(f"Time elapsed FULL: {end_full - start_full} seconds\n\tNO PARSE: {(end_full - start_full) - parsing_time} seconds")
|
||||
return abstracts
|
||||
|
||||
|
||||
def flush(movie_ids):
|
||||
|
||||
|
||||
abstracts = get_clean_text(movie_ids)
|
||||
|
||||
start = time.time()
|
||||
with open(output_csv, "a", newline="", encoding="utf-8") as f_out:
|
||||
writer = csv.DictWriter(f_out, fieldnames=["subject", "text"])
|
||||
|
||||
for id, text in abstracts.items():
|
||||
writer.writerow({"subject": id, "text": text})
|
||||
end = time.time()
|
||||
|
||||
print(f"Time elapsed WRITE: {end - start} seconds")
|
||||
|
||||
|
||||
|
||||
|
||||
def reconcile() -> int:
|
||||
|
||||
start = time.time()
|
||||
input_file = open(input_csv, "r", newline="", encoding="utf-8")
|
||||
output_file = open(output_csv, "r", newline="", encoding="utf-8")
|
||||
|
||||
next(input_file)
|
||||
LAST_CHECKED = output_file.readlines()[-1].split(",")[0]
|
||||
current_check = input_file.readline().split(",")[1]
|
||||
|
||||
index = 1
|
||||
|
||||
while current_check != LAST_CHECKED:
|
||||
current_check = input_file.readline().split(",")[1].replace("\n", "")
|
||||
index += 1
|
||||
|
||||
input_file.close()
|
||||
output_file.close()
|
||||
end = time.time()
|
||||
|
||||
|
||||
print(f"Time elapsed RECONCILE: {end - start} seconds")
|
||||
|
||||
print(f"FOUND, we need to skip {index} lines")
|
||||
|
||||
return index
|
||||
|
||||
|
||||
if not Path(output_csv).is_file():
|
||||
# Initialize output CSV
|
||||
with open(output_csv, "w", newline="", encoding="utf-8") as f_out:
|
||||
writer = csv.DictWriter(f_out, fieldnames=["subject", "text"])
|
||||
writer.writeheader()
|
||||
|
||||
|
||||
SKIP = reconcile()
|
||||
|
||||
|
||||
# Read CSV in RAM
|
||||
with open(input_csv, "r", newline="", encoding="utf-8") as input:
|
||||
|
||||
# Skip already done
|
||||
for i in range(0, SKIP):
|
||||
next(input)
|
||||
|
||||
reader = csv.reader(input)
|
||||
|
||||
index = -1
|
||||
movie_ids = []
|
||||
|
||||
for line in reader:
|
||||
|
||||
index += 1
|
||||
|
||||
if index == 0:
|
||||
continue
|
||||
|
||||
# Save movies in map
|
||||
movie_ids.append(line[1])
|
||||
|
||||
if index % CHUNK == 0:
|
||||
|
||||
# Flush movies
|
||||
flush(movie_ids)
|
||||
movie_ids = []
|
||||
65
Scripts/DatasetMerging/SQL_Queries/db_creation.sql
Normal file
65
Scripts/DatasetMerging/SQL_Queries/db_creation.sql
Normal file
@ -0,0 +1,65 @@
|
||||
CREATE TABLE IF NOT EXISTS Movies (
|
||||
MovieID INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
MovieURI TEXT UNIQUE NOT NULL
|
||||
);
|
||||
|
||||
|
||||
CREATE TABLE IF NOT EXISTS WikiPageIDs (
|
||||
MovieID INTEGER PRIMARY KEY,
|
||||
PageID INTEGER UNIQUE NOT NULL,
|
||||
FOREIGN KEY(MovieID) REFERENCES Movies(MovieID)
|
||||
);
|
||||
|
||||
|
||||
CREATE TABLE IF NOT EXISTS WikipediaAbstracts (
|
||||
MovieID INTEGER PRIMARY KEY,
|
||||
Abstract TEXT NOT NULL,
|
||||
FOREIGN KEY(MovieID) REFERENCES Movies(MovieID)
|
||||
);
|
||||
|
||||
|
||||
CREATE TABLE IF NOT EXISTS Origins (
|
||||
OriginID INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
OriginName TEXT UNIQUE NOT NULL
|
||||
);
|
||||
|
||||
|
||||
CREATE TABLE IF NOT EXISTS Subjects (
|
||||
SubjectID INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
SubjectURI TEXT UNIQUE NOT NULL,
|
||||
OriginID BIGINT NOT NULL,
|
||||
FOREIGN KEY(OriginID) REFERENCES Origins(OriginID)
|
||||
);
|
||||
|
||||
|
||||
CREATE TABLE IF NOT EXISTS Relationships (
|
||||
RelationshipID INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
RelationshipURI TEXT UNIQUE NOT NULL
|
||||
);
|
||||
|
||||
|
||||
CREATE TABLE IF NOT EXISTS Objects (
|
||||
ObjectID INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
ObjectURI TEXT UNIQUE NOT NULL,
|
||||
OriginID BIGINT NOT NULL,
|
||||
FOREIGN KEY(OriginID) REFERENCES Origins(OriginID)
|
||||
);
|
||||
|
||||
CREATE TABLE IF NOT EXISTS RDFs (
|
||||
RDF_ID INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
MovieID INTEGER NOT NULL,
|
||||
SubjectID INTEGER NOT NULL,
|
||||
RelationshipID INTEGER NOT NULL,
|
||||
ObjectID INTEGER NOT NULL,
|
||||
UNIQUE(SubjectID, RelationshipID, ObjectID),
|
||||
FOREIGN KEY(MovieID) REFERENCES Movies(MovieID),
|
||||
FOREIGN KEY(SubjectID) REFERENCES Subjects(SubjectID),
|
||||
FOREIGN KEY(RelationshipID) REFERENCES Relationships(RelationshipID),
|
||||
FOREIGN KEY(ObjectID) REFERENCES Objects(ObjectID)
|
||||
);
|
||||
|
||||
CREATE INDEX IF NOT EXISTS idx_rdf_movie_id ON RDFs(MovieID);
|
||||
CREATE INDEX IF NOT EXISTS idx_rdf_subject_id ON RDFs(SubjectID);
|
||||
CREATE INDEX IF NOT EXISTS idx_rdf_relationship_id ON RDFs(RelationshipID);
|
||||
CREATE INDEX IF NOT EXISTS idx_rdf_object_id ON RDFs(ObjectID);
|
||||
|
||||
35
Scripts/DatasetMerging/SQL_Queries/query.sql
Normal file
35
Scripts/DatasetMerging/SQL_Queries/query.sql
Normal file
@ -0,0 +1,35 @@
|
||||
-- Insert MovieURI into Movies ; MovieID is auto incremental
|
||||
INSERT INTO Movies (MovieURI) VALUES (?);
|
||||
|
||||
-- Get MovieID where MovieURI equal given value
|
||||
SELECT MovieID FROM Movies WHERE MovieURI = ?;
|
||||
|
||||
-- SetPageId
|
||||
INSERT INTO WikiPageIDs (MovieID, PageID) VALUES (?,?);
|
||||
|
||||
-- Get MovieId by PageID ... ( to create WikipediaAbstract)
|
||||
SELECT MovieID FROM WikiPageIDs WHERE PageID = ?;
|
||||
|
||||
-- SetAbstract ...
|
||||
|
||||
INSERT INTO WikipediaAbstracts (MovieID, Abstract) VALUES (?,?);
|
||||
|
||||
|
||||
-- SetOrigin
|
||||
---
|
||||
INSERT INTO Origins (OriginName) VALUES ("dataset.csv"),("reverse.csv");
|
||||
|
||||
-- GetOrigin
|
||||
SELECT OriginID FROM Origins WHERE OriginName = ?;
|
||||
|
||||
-- Subject, Relationship, Object, RDF
|
||||
INSERT INTO Subjects (SubjectURI, OriginID) VALUES (?,?);
|
||||
INSERT INTO Relationships (RelationshipURI) VALUES (?);
|
||||
INSERT INTO Objects (ObjectURI, OriginID) VALUES (?,?);
|
||||
|
||||
SELECT SubjectID FROM Subjects WHERE SubjectURI = ?;
|
||||
SELECT RelationshipID FROM Relationships WHERE RelationshipURI = ?;
|
||||
SELECT ObjectID FROM Objects WHERE ObjectURI = ?;
|
||||
|
||||
|
||||
INSERT INTO RDFs (MovieID, SubjectID, RelationshipID, ObjectID) VALUES (?,?,?,?);
|
||||
26
Scripts/DatasetMerging/datasetInfo.md
Normal file
26
Scripts/DatasetMerging/datasetInfo.md
Normal file
@ -0,0 +1,26 @@
|
||||
# HOW THE DATASET IS BUILT AND POPULATED
|
||||
|
||||
Note: the data are taken from CSV files in 1-hop
|
||||
|
||||
## CSV files composition
|
||||
|
||||
| CSV files | Original structure | Saved AS |
|
||||
|--------------------|---------------------------------------|-------------------------------------|
|
||||
| Wikipeda-summary | PageId / abstract | subject, text |
|
||||
| Movies | Movie URI | "subject" |
|
||||
| Dataset | Movie URI / Relationship / Object [RDF] | subject, relationship, object |
|
||||
| Movies-PageId | Movie URI / PageId (wiki) | "subject", "object" |
|
||||
| Reverse | Subject / Relationship / Movie URI | "subject", "relationship", "object" |
|
||||
|
||||
## Wanted tables schema
|
||||
|
||||
| Table | Columns |
|
||||
|---------------|-------------------------------------------------------------------------|
|
||||
| Movies | MovieID [PK], Movie URI |
|
||||
| WikiPageIDs | MovieID [PK, FK], PageId [IDX] (wiki) *(Not important for now)* |
|
||||
| Abstracts | MovieID [PK, FK], abstract |
|
||||
| Subjects | SubjectID [PK], RDF Subject (from Dataset.csv or Reverse.csv), OriginID [FK] |
|
||||
| Relationships | RelationshipID [PK], RDF Relationship (value only, not the actual relation) |
|
||||
| Objects | ObjectID [PK], RDF Object, OriginID [FK] |
|
||||
| Origins | OriginID [PK], Origin Name |
|
||||
| RDFs | RDF_ID [PK], MovieID [FK], SubjectID [FK], RelationshipID [FK], ObjectID [FK] |
|
||||
375
Scripts/DatasetMerging/datawarehouse.py
Normal file
375
Scripts/DatasetMerging/datawarehouse.py
Normal file
@ -0,0 +1,375 @@
|
||||
import sqlite3
|
||||
import csv
|
||||
|
||||
#####################################################################
|
||||
# This file builds DatawareHouse/dataset.db from 1-hop csv files #
|
||||
# Its Schema in . /SQL_Queries/db_creation.sql #
|
||||
# The sql query used to popualate id in . /SQL_Queries/query.sql #
|
||||
#####################################################################
|
||||
|
||||
# sometimes you may need to build a new db file, here a little snippet for you
|
||||
# sqlite3 ./Assets/Dataset/Tmp/dataset.db < ./Scripts/DataCleaning/SQL_Queries/db_creation.sql
|
||||
|
||||
# --- Global configuration ---
|
||||
DB_NAME = "./Assets/Dataset/DatawareHouse/dataset.db"
|
||||
MOVIES_CSV = "./Assets/Dataset/1-hop/movies.csv"
|
||||
PAGEID_CSV = "./Assets/Dataset/1-hop/movie-pageid.csv"
|
||||
SUMMARY_CSV = "./Assets/Dataset/1-hop/wikipedia-summary.csv"
|
||||
DATASET_CSV = "./Assets/Dataset/1-hop/dataset.csv"
|
||||
REVERSE_CSV = "./Assets/Dataset/1-hop/reverse.csv"
|
||||
|
||||
MOVIES_CSV_HANDLER = open(MOVIES_CSV,"r",newline='', encoding="utf-8")
|
||||
PAGEID_CSV_HANDLER = open(PAGEID_CSV,"r",newline='', encoding="utf-8")
|
||||
SUMMARY_CSV_HANDLER = open(SUMMARY_CSV,"r",newline='', encoding="utf-8")
|
||||
DATASET_CSV_HANDLER = open(DATASET_CSV,"r",newline='', encoding="utf-8")
|
||||
REVERSE_CSV_HANDLER = open(REVERSE_CSV,"r",newline='', encoding="utf-8")
|
||||
|
||||
CONN = sqlite3.connect(DB_NAME)
|
||||
CURS = CONN.cursor()
|
||||
|
||||
# MARK: SQL Definitions
|
||||
# Insert MovieURI
|
||||
|
||||
def insertOrigin(curs : sqlite3.Cursor ) -> bool:
|
||||
|
||||
QUERY = "INSERT INTO Origins (OriginName) VALUES ('dataset.csv'),('reverse.csv');"
|
||||
try:
|
||||
curs.execute(QUERY)
|
||||
return True
|
||||
except sqlite3.IntegrityError:
|
||||
return False
|
||||
|
||||
def selectOrigin(curs: sqlite3.Cursor, originName: str) -> int | None:
|
||||
|
||||
QUERY = "SELECT OriginID FROM Origins WHERE OriginName = ?;"
|
||||
|
||||
curs.execute(QUERY, [originName])
|
||||
originId = curs.fetchone()
|
||||
if not originId:
|
||||
return None
|
||||
|
||||
# in this case the real id is the first element of the tuple
|
||||
return originId[0]
|
||||
|
||||
def insertMovie(curs : sqlite3.Cursor , movieUri: str) -> bool:
|
||||
|
||||
QUERY = "INSERT INTO Movies (MovieURI) VALUES (?);"
|
||||
try:
|
||||
curs.execute(QUERY,[movieUri])
|
||||
return True
|
||||
except sqlite3.IntegrityError:
|
||||
return False
|
||||
|
||||
|
||||
def selectMovieId(curs: sqlite3.Cursor, movieUri: str) -> int | None:
|
||||
|
||||
QUERY = "SELECT MovieID FROM Movies WHERE MovieURI = ?;"
|
||||
|
||||
curs.execute(QUERY, [movieUri])
|
||||
movieId = curs.fetchone()
|
||||
if not movieId:
|
||||
return None
|
||||
|
||||
# in this case the real id is the first element of the tuple
|
||||
return movieId[0]
|
||||
|
||||
|
||||
def insertWikiPageId(curs: sqlite3.Cursor, movieId: int, pageId: int) -> bool:
|
||||
QUERY = "INSERT INTO WikiPageIDs (MovieID, PageID) VALUES (?,?);"
|
||||
try:
|
||||
curs.execute(QUERY,[movieId, pageId])
|
||||
return True
|
||||
except sqlite3.IntegrityError:
|
||||
return False
|
||||
|
||||
def selectMovieIdFromWikiPageId(curs: sqlite3.Cursor,pageId: int) -> int | None:
|
||||
|
||||
QUERY = "SELECT MovieID FROM WikiPageIDs WHERE PageID = ?;"
|
||||
|
||||
curs.execute(QUERY, [pageId])
|
||||
movieId = curs.fetchone()
|
||||
if not movieId:
|
||||
return None
|
||||
|
||||
# in this case the real id is the first element of the tuple
|
||||
return movieId[0]
|
||||
|
||||
def insertWikiAbstract(curs: sqlite3.Cursor, movieId: int, abstract: str) -> bool:
|
||||
QUERY = "INSERT INTO WikipediaAbstracts (MovieID, Abstract) VALUES (?,?);"
|
||||
try:
|
||||
curs.execute(QUERY,[movieId, abstract])
|
||||
return True
|
||||
except sqlite3.IntegrityError:
|
||||
return False
|
||||
|
||||
def insertSubject(curs: sqlite3.Cursor, subjectURI: str, originID: int) -> bool:
|
||||
QUERY = "INSERT INTO Subjects (SubjectURI, OriginID) VALUES (?,?);"
|
||||
try:
|
||||
curs.execute(QUERY,[subjectURI, originID])
|
||||
return True
|
||||
except sqlite3.IntegrityError:
|
||||
return False
|
||||
|
||||
def insertRelationship(curs: sqlite3.Cursor, relationshipURI: str) -> bool:
|
||||
QUERY = "INSERT INTO Relationships (RelationshipURI) VALUES (?);"
|
||||
try:
|
||||
curs.execute(QUERY,[relationshipURI])
|
||||
return True
|
||||
except sqlite3.IntegrityError:
|
||||
return False
|
||||
|
||||
def insertObject(curs: sqlite3.Cursor, objectURI: str, originID: int) -> bool:
|
||||
QUERY = "INSERT INTO objects (ObjectURI, OriginID) VALUES (?,?);"
|
||||
try:
|
||||
curs.execute(QUERY,[objectURI, originID])
|
||||
return True
|
||||
except sqlite3.IntegrityError:
|
||||
return False
|
||||
|
||||
def selectSubjectId(curs: sqlite3.Cursor, subjectURI: str) -> int | None:
|
||||
|
||||
QUERY = "SELECT SubjectID FROM Subjects WHERE SubjectURI = ?;"
|
||||
|
||||
curs.execute(QUERY, [subjectURI])
|
||||
subjectId = curs.fetchone()
|
||||
if not subjectId:
|
||||
return None
|
||||
|
||||
# in this case the real id is the first element of the tuple
|
||||
return subjectId[0]
|
||||
|
||||
def selectRelationshipId(curs: sqlite3.Cursor, relationshipURI: str) -> int | None:
|
||||
|
||||
QUERY = "SELECT RelationshipID FROM Relationships WHERE RelationshipURI = ?;"
|
||||
|
||||
curs.execute(QUERY, [relationshipURI])
|
||||
relationshipId = curs.fetchone()
|
||||
if not relationshipId:
|
||||
return None
|
||||
|
||||
# in this case the real id is the first element of the tuple
|
||||
return relationshipId[0]
|
||||
|
||||
def selectObjectId(curs: sqlite3.Cursor, objectURI: str) -> int | None:
|
||||
|
||||
QUERY = "SELECT ObjectID FROM Objects WHERE ObjectURI = ?;"
|
||||
|
||||
curs.execute(QUERY, [objectURI])
|
||||
objectId = curs.fetchone()
|
||||
if not objectId:
|
||||
return None
|
||||
|
||||
# in this case the real id is the first element of the tuple
|
||||
return objectId[0]
|
||||
|
||||
def insertRDF(
|
||||
curs: sqlite3.Cursor,
|
||||
movieId: int,
|
||||
subjectId: int,
|
||||
relationshipId: int,
|
||||
objectId: int
|
||||
) -> bool:
|
||||
QUERY = "INSERT INTO RDFs (MovieID, SubjectID, RelationshipID, ObjectID) VALUES (?,?,?,?);"
|
||||
try:
|
||||
curs.execute(QUERY,[movieId,subjectId,relationshipId,objectId])
|
||||
return True
|
||||
except sqlite3.IntegrityError:
|
||||
return False
|
||||
|
||||
# MARK: Parsing
|
||||
def parseMovies():
|
||||
|
||||
CSV_READER = csv.reader(MOVIES_CSV_HANDLER)
|
||||
next(CSV_READER)
|
||||
for row in CSV_READER:
|
||||
MOVIE = row[0]
|
||||
insertMovie(CURS, MOVIE)
|
||||
|
||||
|
||||
def parseWikiPageId():
|
||||
CSV_READER = csv.DictReader(PAGEID_CSV_HANDLER)
|
||||
for row in CSV_READER:
|
||||
MOVIE_URI = row["subject"]
|
||||
WIKI_PAGE_ID = int(row["object"])
|
||||
MOVIE_ID = selectMovieId(CURS, MOVIE_URI)
|
||||
|
||||
if MOVIE_ID is None:
|
||||
print(f"The MovieUri: {MOVIE_URI} has not a MovieId ")
|
||||
continue
|
||||
|
||||
insertWikiPageId(CURS, MOVIE_ID, WIKI_PAGE_ID)
|
||||
|
||||
|
||||
def parseAbstract():
|
||||
CSV_READER = csv.DictReader(SUMMARY_CSV_HANDLER)
|
||||
for row in CSV_READER:
|
||||
|
||||
WIKI_PAGE_ID = int(row["subject"])
|
||||
ABSTRACT = row["text"]
|
||||
MOVIE_ID = selectMovieIdFromWikiPageId(CURS, WIKI_PAGE_ID)
|
||||
|
||||
|
||||
if MOVIE_ID is None:
|
||||
print(f"The WikiPageId: {WIKI_PAGE_ID} has not a MovieId ")
|
||||
continue
|
||||
|
||||
insertWikiAbstract(CURS, MOVIE_ID, ABSTRACT)
|
||||
|
||||
|
||||
def parseRDF_Reverse():
|
||||
|
||||
REVERSE_CSV_READER = csv.DictReader(REVERSE_CSV_HANDLER)
|
||||
REVERSE_ORIGIN_ID = selectOrigin(CURS, 'reverse.csv')
|
||||
total = 0
|
||||
|
||||
for row in REVERSE_CSV_READER:
|
||||
SUBJECT = row["subject"]
|
||||
RELATIONSHIP = row["relationship"]
|
||||
OBJECT = row["object"]
|
||||
print(f"RDF triplets:\n\t{SUBJECT} - {RELATIONSHIP} - {OBJECT}")
|
||||
insertSubject(CURS,SUBJECT,REVERSE_ORIGIN_ID)
|
||||
insertRelationship(CURS, RELATIONSHIP)
|
||||
insertObject(CURS, OBJECT, REVERSE_ORIGIN_ID)
|
||||
|
||||
SUBJECT_ID = selectSubjectId(CURS, SUBJECT)
|
||||
OBJECT_ID = selectObjectId(CURS, OBJECT)
|
||||
RELATIONSHIP_ID = selectRelationshipId(CURS, RELATIONSHIP)
|
||||
MOVIE_ID = selectMovieId(CURS, OBJECT)
|
||||
|
||||
|
||||
skip = False
|
||||
|
||||
# guard
|
||||
if SUBJECT_ID is None:
|
||||
print(f"No SubjectId for {SUBJECT}")
|
||||
skip = True
|
||||
|
||||
if OBJECT_ID is None:
|
||||
print(f"No ObjectId for {OBJECT}")
|
||||
skip = True
|
||||
|
||||
if RELATIONSHIP_ID is None:
|
||||
print(f"No RelationshipId for {RELATIONSHIP}")
|
||||
skip = True
|
||||
|
||||
if MOVIE_ID is None:
|
||||
print(f"No MovieId for {OBJECT}")
|
||||
skip = True
|
||||
|
||||
if skip:
|
||||
continue
|
||||
|
||||
if insertRDF(CURS, MOVIE_ID, SUBJECT_ID, RELATIONSHIP_ID, OBJECT_ID):
|
||||
total += 1
|
||||
|
||||
print(total)
|
||||
|
||||
|
||||
|
||||
def parseRDF_Dataset():
|
||||
|
||||
DATASET_CSV_READER = csv.DictReader(DATASET_CSV_HANDLER)
|
||||
DATASET_ORIGIN_ID = selectOrigin(CURS, 'dataset.csv')
|
||||
|
||||
total = 0
|
||||
rdf_idx = 0
|
||||
for row in DATASET_CSV_READER:
|
||||
|
||||
SUBJECT = row["subject"]
|
||||
RELATIONSHIP = row["relationship"]
|
||||
OBJECT = row["object"]
|
||||
|
||||
rdf_idx += 1
|
||||
|
||||
if rdf_idx % 100000 == 0:
|
||||
print(f"RDF number {rdf_idx}:\n\t{SUBJECT} - {RELATIONSHIP} - {OBJECT}")
|
||||
|
||||
insertSubject(CURS,SUBJECT,DATASET_ORIGIN_ID)
|
||||
insertRelationship(CURS, RELATIONSHIP)
|
||||
insertObject(CURS, OBJECT, DATASET_ORIGIN_ID)
|
||||
|
||||
SUBJECT_ID = selectSubjectId(CURS, SUBJECT)
|
||||
OBJECT_ID = selectObjectId(CURS, OBJECT)
|
||||
RELATIONSHIP_ID = selectRelationshipId(CURS, RELATIONSHIP)
|
||||
MOVIE_ID = selectMovieId(CURS, SUBJECT)
|
||||
|
||||
|
||||
skip = False
|
||||
|
||||
# guard
|
||||
if SUBJECT_ID is None:
|
||||
print(f"No SubjectId for {SUBJECT}")
|
||||
skip = True
|
||||
|
||||
if OBJECT_ID is None:
|
||||
print(f"No ObjectId for {OBJECT}")
|
||||
skip = True
|
||||
|
||||
if RELATIONSHIP_ID is None:
|
||||
print(f"No RelationshipId for {RELATIONSHIP}")
|
||||
skip = True
|
||||
|
||||
if MOVIE_ID is None:
|
||||
print(f"No MovieId for {SUBJECT}")
|
||||
skip = True
|
||||
|
||||
if skip:
|
||||
continue
|
||||
|
||||
if insertRDF(CURS, MOVIE_ID, SUBJECT_ID, RELATIONSHIP_ID, OBJECT_ID):
|
||||
total += 1
|
||||
|
||||
print(total)
|
||||
|
||||
|
||||
# MARK: Actual Code
|
||||
# parseMovies()
|
||||
# parseWikiPageId()
|
||||
# parseAbstract()
|
||||
# insertOrigin(CURS)
|
||||
# parseRDF_Reverse()
|
||||
# parseRDF_Dataset()
|
||||
|
||||
|
||||
CONN.commit()
|
||||
CONN.close()
|
||||
|
||||
|
||||
|
||||
MOVIES_CSV_HANDLER.close()
|
||||
PAGEID_CSV_HANDLER.close()
|
||||
SUMMARY_CSV_HANDLER.close()
|
||||
DATASET_CSV_HANDLER.close()
|
||||
REVERSE_CSV_HANDLER.close()
|
||||
|
||||
|
||||
"""
|
||||
The MovieUri: http://dbpedia.org/resource/1%25_(film) has not a MovieId
|
||||
The MovieUri: http://dbpedia.org/resource/10%25:_What_Makes_a_Hero%3F has not a MovieId
|
||||
The MovieUri: http://dbpedia.org/resource/100%25_Arabica has not a MovieId
|
||||
The MovieUri: http://dbpedia.org/resource/100%25_Kadhal has not a MovieId
|
||||
The MovieUri: http://dbpedia.org/resource/100%25_Love_(2011_film) has not a MovieId
|
||||
The MovieUri: http://dbpedia.org/resource/100%25_Love_(2012_film) has not a MovieId
|
||||
The MovieUri: http://dbpedia.org/resource/100%25_Wolf has not a MovieId
|
||||
The MovieUri: http://dbpedia.org/resource/Who_the_$&%25_Is_Jackson_Pollock%3F has not a MovieId
|
||||
The MovieUri: http://dbpedia.org/resource/99%25:_The_Occupy_Wall_Street_Collaborative_Film has not a MovieId
|
||||
The MovieUri: http://dbpedia.org/resource/99_and_44/100%25_Dead has not a MovieId
|
||||
The MovieUri: http://dbpedia.org/resource/Postcards_from_the_48%25 has not a MovieId
|
||||
The MovieUri: http://dbpedia.org/resource/Wool_100%25 has not a MovieId
|
||||
"""
|
||||
|
||||
"""
|
||||
The WikiPageId: 10068850 has not a MovieId
|
||||
The WikiPageId: 55069615 has not a MovieId
|
||||
The WikiPageId: 49510056 has not a MovieId
|
||||
The WikiPageId: 4049786 has not a MovieId
|
||||
The WikiPageId: 55510238 has not a MovieId
|
||||
The WikiPageId: 31239628 has not a MovieId
|
||||
The WikiPageId: 34757217 has not a MovieId
|
||||
The WikiPageId: 64311757 has not a MovieId
|
||||
The WikiPageId: 8326198 has not a MovieId
|
||||
The WikiPageId: 42162164 has not a MovieId
|
||||
The WikiPageId: 18502369 has not a MovieId
|
||||
The WikiPageId: 58092358 has not a MovieId
|
||||
The WikiPageId: 40710250 has not a MovieId
|
||||
"""
|
||||
0
Scripts/Experiments/.gitkeep
Normal file
0
Scripts/Experiments/.gitkeep
Normal file
0
Scripts/Experiments/Queries/.gitkeep
Normal file
0
Scripts/Experiments/Queries/.gitkeep
Normal file
0
Scripts/Experiments/Tmp/.gitkeep
Normal file
0
Scripts/Experiments/Tmp/.gitkeep
Normal file
215
docs/DBPEDIA.md
Normal file
215
docs/DBPEDIA.md
Normal file
@ -0,0 +1,215 @@
|
||||
# DBPedia
|
||||
|
||||
## GraphIRI
|
||||
|
||||
This is the graph identifier (URI):
|
||||
|
||||
`http://dbpedia.org`
|
||||
|
||||
## History of queries
|
||||
|
||||
```SQL
|
||||
PREFIX dbo: <http://dbpedia.org/ontology/>
|
||||
PREFIX dbp: <http://dbpedia.org/property/>
|
||||
PREFIX dbr: <http://dbpedia.org/resource/>
|
||||
|
||||
SELECT ?subject, ?relationship, ?object
|
||||
WHERE {
|
||||
?subject ?relationship ?object .
|
||||
{
|
||||
SELECT ?object
|
||||
WHERE {
|
||||
?m rdf:type dbo:Film .
|
||||
?object ?r ?m
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 2 Hops
|
||||
|
||||
```SQL
|
||||
PREFIX dbo: <http://dbpedia.org/ontology/>
|
||||
PREFIX dbp: <http://dbpedia.org/property/>
|
||||
PREFIX dbr: <http://dbpedia.org/resource/>
|
||||
|
||||
SELECT ?subject, ?relationship, ?object
|
||||
WHERE {
|
||||
?subject ?relationship ?object .
|
||||
FILTER (?relationship != <http://dbpedia.org/ontology/wikiPageWikiLink>)
|
||||
{
|
||||
SELECT ?object
|
||||
WHERE {
|
||||
?m rdf:type dbo:Film .
|
||||
?object ?r ?m
|
||||
FILTER (?r != <http://dbpedia.org/ontology/wikiPageWikiLink>)
|
||||
}
|
||||
}
|
||||
}
|
||||
LIMIT 1000000
|
||||
```
|
||||
|
||||
### 1 Hop
|
||||
|
||||
```SQL
|
||||
PREFIX dbo: <http://dbpedia.org/ontology/>
|
||||
PREFIX dbp: <http://dbpedia.org/property/>
|
||||
PREFIX dbr: <http://dbpedia.org/resource/>
|
||||
|
||||
SELECT ?subject, ?relationship, ?object
|
||||
WHERE {
|
||||
?subject ?relationship ?object .
|
||||
?object rdf:type dbo:Film .
|
||||
FILTER (?relationship != <http://dbpedia.org/ontology/wikiPageWikiLink>)
|
||||
}
|
||||
LIMIT 1000000
|
||||
```
|
||||
|
||||
```SQL
|
||||
PREFIX dbo: <http://dbpedia.org/ontology/>
|
||||
PREFIX dbp: <http://dbpedia.org/property/>
|
||||
PREFIX dbr: <http://dbpedia.org/resource/>
|
||||
|
||||
SELECT ?subject, ?relationship, ?object
|
||||
WHERE {
|
||||
?subject ?relationship ?object .
|
||||
?subject rdf:type dbo:Film .
|
||||
}
|
||||
```
|
||||
|
||||
```SQL
|
||||
PREFIX dbo: <http://dbpedia.org/ontology/>
|
||||
PREFIX dbp: <http://dbpedia.org/property/>
|
||||
PREFIX dbr: <http://dbpedia.org/resource/>
|
||||
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
|
||||
|
||||
SELECT ?subject, ?relationship, ?object
|
||||
WHERE {
|
||||
?subject ?relationship ?object .
|
||||
?subject rdf:type dbo:Film .
|
||||
?a foaf:primaryTopic ?subject
|
||||
}
|
||||
```
|
||||
|
||||
```SQL
|
||||
PREFIX dbo: <http://dbpedia.org/ontology/>
|
||||
PREFIX dbp: <http://dbpedia.org/property/>
|
||||
PREFIX dbr: <http://dbpedia.org/resource/>
|
||||
|
||||
SELECT ?subject
|
||||
WHERE {
|
||||
?subject rdf:type dbo:Film .
|
||||
}
|
||||
```
|
||||
|
||||
```SQL
|
||||
PREFIX dbo: <http://dbpedia.org/ontology/>
|
||||
PREFIX dbp: <http://dbpedia.org/property/>
|
||||
PREFIX dbr: <http://dbpedia.org/resource/>
|
||||
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
|
||||
|
||||
SELECT ?subject
|
||||
WHERE {
|
||||
?subject rdf:type dbo:Film .
|
||||
?a foaf:primaryTopic ?subject
|
||||
}
|
||||
```
|
||||
|
||||
```SQL
|
||||
PREFIX dbo: <http://dbpedia.org/ontology/>
|
||||
PREFIX dbp: <http://dbpedia.org/property/>
|
||||
PREFIX dbr: <http://dbpedia.org/resource/>
|
||||
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
|
||||
|
||||
SELECT ?subject, ?relationship, ?object
|
||||
WHERE {
|
||||
?subject ?relationship ?object .
|
||||
?subject rdf:type dbo:Film .
|
||||
?a foaf:primaryTopic ?subject
|
||||
FILTER (?relationship NOT IN (
|
||||
dbo:wikiPageRedirects,
|
||||
dbo:wikiPageExternalLink,
|
||||
dbo:wikiPageWikiLink,
|
||||
foaf:primaryTopic
|
||||
))
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
#### Wikipedia-movie
|
||||
|
||||
a.k.a the file with the wikipedia abstract
|
||||
|
||||
```SQL
|
||||
PREFIX dbo: <http://dbpedia.org/ontology/>
|
||||
PREFIX dbp: <http://dbpedia.org/property/>
|
||||
PREFIX dbr: <http://dbpedia.org/resource/>
|
||||
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
|
||||
|
||||
SELECT ?subject , ?object
|
||||
WHERE {
|
||||
?subject foaf:primaryTopic ?object .
|
||||
?object rdf:type dbo:Film
|
||||
}
|
||||
```
|
||||
|
||||
#### Reverse
|
||||
|
||||
```SQL
|
||||
PREFIX dbo: <http://dbpedia.org/ontology/>
|
||||
PREFIX dbp: <http://dbpedia.org/property/>
|
||||
PREFIX dbr: <http://dbpedia.org/resource/>
|
||||
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
|
||||
|
||||
SELECT ?subject, ?relationship, ?object
|
||||
WHERE {
|
||||
?subject ?relationship ?object .
|
||||
?object rdf:type dbo:Film .
|
||||
?a foaf:primaryTopic ?object
|
||||
FILTER (?relationship NOT IN (
|
||||
dbo:wikiPageRedirects,
|
||||
dbo:wikiPageExternalLink,
|
||||
dbo:wikiPageWikiLink,
|
||||
foaf:primaryTopic
|
||||
))
|
||||
}
|
||||
```
|
||||
|
||||
```SQL
|
||||
PREFIX dbo: <http://dbpedia.org/ontology/>
|
||||
PREFIX dbp: <http://dbpedia.org/property/>
|
||||
PREFIX dbr: <http://dbpedia.org/resource/>
|
||||
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
|
||||
|
||||
SELECT ?subject, ?relationship, ?object
|
||||
WHERE {
|
||||
?subject ?relationship ?object .
|
||||
?object rdf:type dbo:Film .
|
||||
?a foaf:primaryTopic ?object
|
||||
FILTER (?relationship NOT IN (
|
||||
dbo:wikiPageRedirects,
|
||||
dbo:wikiPageExternalLink,
|
||||
dbo:wikiPageWikiLink,
|
||||
foaf:primaryTopic
|
||||
))
|
||||
|
||||
```
|
||||
|
||||
#### Film \ wiki page ID
|
||||
|
||||
```SQL
|
||||
PREFIX dbo: <http://dbpedia.org/ontology/>
|
||||
PREFIX dbp: <http://dbpedia.org/property/>
|
||||
PREFIX dbr: <http://dbpedia.org/resource/>
|
||||
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
|
||||
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
|
||||
|
||||
SELECT ?subject ?pageID
|
||||
WHERE {
|
||||
?subject rdf:type dbo:Film .
|
||||
?subject dbo:wikiPageID ?pageID .
|
||||
?subject rdfs:label ?label .
|
||||
FILTER (lang(?label) = "en")
|
||||
}
|
||||
|
||||
```
|
||||
3
docs/DEVELOPMENT.md
Normal file
3
docs/DEVELOPMENT.md
Normal file
@ -0,0 +1,3 @@
|
||||
# Development
|
||||
|
||||
## Data Gathering
|
||||
108
docs/RESOURCES.md
Normal file
108
docs/RESOURCES.md
Normal file
@ -0,0 +1,108 @@
|
||||
# Resources
|
||||
|
||||
## Byte-Pair Encoding (BPE)
|
||||
|
||||
### Overview
|
||||
|
||||
Byte-Pair Encoding (BPE) is a simple but powerful text compression and tokenization algorithm.
|
||||
Originally introduced as a data compression method, it has been widely adopted in **Natural Language Processing (NLP)** to build subword vocabularies for models such as GPT and BERT.
|
||||
|
||||
---
|
||||
|
||||
### Key Idea
|
||||
|
||||
BPE works by iteratively replacing the most frequent pair of symbols (initially characters) with a new symbol.
|
||||
Over time, frequent character sequences (e.g., common morphemes, prefixes, suffixes) are merged into single tokens.
|
||||
|
||||
---
|
||||
|
||||
### Algorithm Steps
|
||||
|
||||
1. **Initialization**
|
||||
- Treat each character of the input text as a token.
|
||||
|
||||
2. **Find Frequent Pairs**
|
||||
- Count all adjacent token pairs in the sequence.
|
||||
|
||||
3. **Merge Most Frequent Pair**
|
||||
- Replace the most frequent pair with a new symbol not used in the text.
|
||||
|
||||
4. **Repeat**
|
||||
- Continue until no frequent pairs remain or a desired vocabulary size is reached.
|
||||
|
||||
---
|
||||
|
||||
### Example
|
||||
|
||||
Suppose the data to be encoded is:
|
||||
|
||||
```text
|
||||
aaabdaaabac
|
||||
```
|
||||
|
||||
#### Step 1: Merge `"aa"`
|
||||
|
||||
Most frequent pair: `"aa"` → replace with `"Z"`
|
||||
|
||||
```text
|
||||
ZabdZabac
|
||||
Z = aa
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
#### Step 2: Merge `"ab"`
|
||||
|
||||
Most frequent pair: `"ab"` → replace with `"Y"`
|
||||
|
||||
```text
|
||||
ZYdZYac
|
||||
Y = ab
|
||||
Z = aa
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
#### Step 3: Merge `"ZY"`
|
||||
|
||||
Most frequent pair: `"ZY"` → replace with `"X"`
|
||||
|
||||
```text
|
||||
XdXac
|
||||
X = ZY
|
||||
Y = ab
|
||||
Z = aa
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
At this point, no pairs occur more than once, so the process stops.
|
||||
|
||||
---
|
||||
|
||||
### Decompression
|
||||
|
||||
To recover the original data, replacements are applied in **reverse order**:
|
||||
|
||||
```text
|
||||
XdXac
|
||||
→ ZYdZYac
|
||||
→ ZabdZabac
|
||||
→ aaabdaaabac
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### Advantages
|
||||
|
||||
- **Efficient vocabulary building**: reduces the need for massive word lists.
|
||||
- **Handles rare words**: breaks them into meaningful subword units.
|
||||
- **Balances character- and word-level tokenization**.
|
||||
|
||||
---
|
||||
|
||||
### Limitations
|
||||
|
||||
- Does not consider linguistic meaning—merges are frequency-based.
|
||||
- May create tokens that are not linguistically natural.
|
||||
- Vocabulary is fixed after training.
|
||||
67
docs/SPARQL.md
Normal file
67
docs/SPARQL.md
Normal file
@ -0,0 +1,67 @@
|
||||
# SparQL
|
||||
|
||||
> [!NOTE]
|
||||
> Resources taken from [this website](https://sparql.dev/)
|
||||
|
||||
## SQL Queries
|
||||
|
||||
### SELECT
|
||||
|
||||
```SQL
|
||||
SELECT ?var1, ?var2, ...
|
||||
```
|
||||
|
||||
### WHERE
|
||||
|
||||
```SQL
|
||||
WHERE {
|
||||
pattern1 .
|
||||
pattern2 .
|
||||
...
|
||||
}
|
||||
```
|
||||
|
||||
### FILTER
|
||||
|
||||
It's used to restrict [`WHERE`](#where) clauses
|
||||
|
||||
```SQL
|
||||
WHERE {
|
||||
?person <http://example.com/hasCar> ?car .
|
||||
FILTER (?car = <http://example.com/Car1>)
|
||||
}
|
||||
```
|
||||
|
||||
### OPTIONAL
|
||||
|
||||
It's used to fetch available content if exists
|
||||
|
||||
```SQL
|
||||
SELECT ?person ?car
|
||||
WHERE {
|
||||
?person <http://example.com/hasCar> ?car .
|
||||
OPTIONAL {
|
||||
?car <http://example.com/hasColor> ?color .
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### LIMIT
|
||||
|
||||
Limits results
|
||||
|
||||
```SQL
|
||||
LIMIT 10 -- Take only 10 results
|
||||
```
|
||||
|
||||
## SparQL functions
|
||||
|
||||
### COUNT
|
||||
|
||||
```SQL
|
||||
SELECT (COUNT(?person) AS ?count)
|
||||
WHERE {
|
||||
?person <http://example.com/hasCar> ?car .
|
||||
}
|
||||
```
|
||||
|
||||
BIN
environment.yaml
Normal file
BIN
environment.yaml
Normal file
Binary file not shown.
17
requirements.txt
Normal file
17
requirements.txt
Normal file
@ -0,0 +1,17 @@
|
||||
certifi==2025.8.3
|
||||
charset-normalizer==3.4.3
|
||||
idna==3.10
|
||||
numpy==2.3.3
|
||||
pandas==2.3.2
|
||||
pyparsing==3.2.4
|
||||
python-dateutil==2.9.0.post0
|
||||
pytz==2025.2
|
||||
rdflib==7.1.4
|
||||
requests==2.32.5
|
||||
setuptools==78.1.1
|
||||
six==1.17.0
|
||||
SPARQLWrapper==2.0.0
|
||||
tzdata==2025.2
|
||||
urllib3==2.5.0
|
||||
wheel==0.45.1
|
||||
Wikipedia-API==0.8.1
|
||||
Loading…
x
Reference in New Issue
Block a user