67 lines
1.6 KiB
Markdown
67 lines
1.6 KiB
Markdown
|
|
# Canonical Forms
|
||
|
|
|
||
|
|
In order to see if we are in one of these canonical forms, just write the
|
||
|
|
equations from the block diagram, and find the associated $S(A, B, C, D)$.
|
||
|
|
|
||
|
|
> [!TIP]
|
||
|
|
> In order to find a rough diagram, use
|
||
|
|
> [Horner Factorization](MODERN-CONTROL.md/#horner-factorization) to find
|
||
|
|
> $a_i$ values. Then put all the $b_i$ to the right integrator by shifting them
|
||
|
|
> as many left places, starting from the rightmost, for the number of
|
||
|
|
> associated $s$
|
||
|
|
|
||
|
|
## Control Canonical Form
|
||
|
|
It is in such forms when:
|
||
|
|
$$
|
||
|
|
A = \begin{bmatrix}
|
||
|
|
- a_1 & -a_2 & -a_3 & \dots & -a_{n-1} &-a_n\\
|
||
|
|
1 & 0 & 0 & \dots & 0 & 0\\
|
||
|
|
0 & 1 & 0 & \dots & 0 & 0\\
|
||
|
|
\dots & \dots & \dots & \dots & \dots \\
|
||
|
|
0 & 0 & 0 & \dots & 1 & 0
|
||
|
|
\end{bmatrix}
|
||
|
|
|
||
|
|
B = \begin{bmatrix}
|
||
|
|
1 \\ 0 \\ \dots \\ \dots \\ 0
|
||
|
|
\end{bmatrix}
|
||
|
|
|
||
|
|
C = \begin{bmatrix}
|
||
|
|
b_1 & b_2 & \dots & b_n
|
||
|
|
\end{bmatrix}
|
||
|
|
|
||
|
|
D = \begin{bmatrix}
|
||
|
|
0
|
||
|
|
\end{bmatrix}
|
||
|
|
$$
|
||
|
|
|
||
|
|
## Modal Canonical Forms
|
||
|
|
> [!CAUTION]
|
||
|
|
> This form is the most difficult to find, as this varies drastically in cases
|
||
|
|
> of double roots
|
||
|
|
>
|
||
|
|
$$
|
||
|
|
A = \begin{bmatrix}
|
||
|
|
- a_1 & 0 & 0 & \dots & 0\\
|
||
|
|
0 & -a_2 & 0 & \dots & 0\\
|
||
|
|
0 & 0 & -a_3 & \dots & 0\\
|
||
|
|
\dots & \dots & \dots & \dots & \dots \\
|
||
|
|
0 & 0 & 0 & 0 & -a_n
|
||
|
|
\end{bmatrix}
|
||
|
|
|
||
|
|
B = \begin{bmatrix}
|
||
|
|
1 \\ 1 \\ \dots \\ \dots \\ 1
|
||
|
|
\end{bmatrix}
|
||
|
|
|
||
|
|
C = \begin{bmatrix}
|
||
|
|
b_1 & b_2 & \dots & b_n
|
||
|
|
\end{bmatrix}
|
||
|
|
|
||
|
|
D = \begin{bmatrix}
|
||
|
|
0
|
||
|
|
\end{bmatrix}
|
||
|
|
$$
|
||
|
|
|
||
|
|
## Observable Canonical Form
|
||
|
|
<!--TODO: Correct here -->
|
||
|
|
|
||
|
|
[^reference-input-pole-allocation]: [MIT | 06 January 2025 | pg. 2](https://ocw.mit.edu/courses/16-30-feedback-control-systems-fall-2010/c553561f63feaa6173e31994f45f0c60_MIT16_30F10_lec11.pdf)
|