1.6 KiB
1.6 KiB
Canonical Forms
In order to see if we are in one of these canonical forms, just write the
equations from the block diagram, and find the associated S(A, B, C, D).
Tip
In order to find a rough diagram, use Horner Factorization to find
a_ivalues. Then put all theb_ito the right integrator by shifting them as many left places, starting from the rightmost, for the number of associateds
Control Canonical Form
It is in such forms when:
A = \begin{bmatrix}
- a_1 & -a_2 & -a_3 & \dots & -a_{n-1} &-a_n\\
1 & 0 & 0 & \dots & 0 & 0\\
0 & 1 & 0 & \dots & 0 & 0\\
\dots & \dots & \dots & \dots & \dots \\
0 & 0 & 0 & \dots & 1 & 0
\end{bmatrix}
B = \begin{bmatrix}
1 \\ 0 \\ \dots \\ \dots \\ 0
\end{bmatrix}
C = \begin{bmatrix}
b_1 & b_2 & \dots & b_n
\end{bmatrix}
D = \begin{bmatrix}
0
\end{bmatrix}
Modal Canonical Forms
Caution
This form is the most difficult to find, as this varies drastically in cases of double roots
A = \begin{bmatrix}
- a_1 & 0 & 0 & \dots & 0\\
0 & -a_2 & 0 & \dots & 0\\
0 & 0 & -a_3 & \dots & 0\\
\dots & \dots & \dots & \dots & \dots \\
0 & 0 & 0 & 0 & -a_n
\end{bmatrix}
B = \begin{bmatrix}
1 \\ 1 \\ \dots \\ \dots \\ 1
\end{bmatrix}
C = \begin{bmatrix}
b_1 & b_2 & \dots & b_n
\end{bmatrix}
D = \begin{bmatrix}
0
\end{bmatrix}