Control-Network-Systems/docs/Chapters/8-SMITH-PREDICTOR.md

38 lines
840 B
Markdown
Raw Permalink Normal View History

2025-01-17 20:15:01 +01:00
# Smith Predictor
Once you have your system with `pure delays`, desing $G_c$
as if $G_p$ ha no `delay` at all. The resulting system
should be something similar to: $\frac{G_cG_p}{1 + G_cG_p}$.
Now consider the real delay of the system and desing $\hat{G}_c$
so that the new $\hat{G}(s) = G(s)e^{-sT}$:
$$
\begin{align*}
\frac{\hat{G}_cG_pe^{-sT}}{1 + \hat{G}_cG_pe^{-sT}}
&= \frac{G_cG_p}{1 + G_cG_p}e^{-sT} \rightarrow \\
\rightarrow
\frac{\hat{G}_c}{1 + \hat{G}_cG_pe^{-sT}}
&= \frac{G_c}{1 + G_cG_p} \rightarrow \\
\rightarrow
\hat{G}_c + \hat{G}_c G_cG_p
&= G_c + G_c\hat{G}_cG_pe^{-sT} \rightarrow \\
\rightarrow
\hat{G}_c \left[
1 + G_cG_p(1 - e^{-sT})
\right]
&= G_c \rightarrow \\
\rightarrow
\hat{G}_c
&= \frac{ G_c}{ 1 + G_cG_p(1 - e^{-sT})}
\end{align*}
$$