840 B
840 B
Smith Predictor
Once you have your system with pure delays, desing G_c
as if G_p ha no delay at all. The resulting system
should be something similar to: \frac{G_cG_p}{1 + G_cG_p}.
Now consider the real delay of the system and desing \hat{G}_c
so that the new \hat{G}(s) = G(s)e^{-sT}:
\begin{align*}
\frac{\hat{G}_cG_pe^{-sT}}{1 + \hat{G}_cG_pe^{-sT}}
&= \frac{G_cG_p}{1 + G_cG_p}e^{-sT} \rightarrow \\
\rightarrow
\frac{\hat{G}_c}{1 + \hat{G}_cG_pe^{-sT}}
&= \frac{G_c}{1 + G_cG_p} \rightarrow \\
\rightarrow
\hat{G}_c + \hat{G}_c G_cG_p
&= G_c + G_c\hat{G}_cG_pe^{-sT} \rightarrow \\
\rightarrow
\hat{G}_c \left[
1 + G_cG_p(1 - e^{-sT})
\right]
&= G_c \rightarrow \\
\rightarrow
\hat{G}_c
&= \frac{ G_c}{ 1 + G_cG_p(1 - e^{-sT})}
\end{align*}