132 lines
2.3 KiB
Markdown
Raw Normal View History

2025-01-08 15:08:32 +01:00
# Example 3
## Double Mass Cart
![double mass cart](./../../Images/Examples/Example-3/double-cart.png)
### Formulas
- Resulting forces for cart 1:\
$
m_1 \ddot{p}_1 = k_2(p_2 - p_1) + b_2( \dot{p}_2 - \dot{p}_1) -
k_1 p_1 - b_1 \dot{p}_1
$
- Resulting forces for cart 2:\
$
m_2 \ddot{p}_2 = F - k_2(p_2 - p_1) - b_2( \dot{p}_2 - \dot{p}_1)
$
### Reasoning
We now have 2 different accelerations. The highest order of derivatives is 2 for
2 variables, hence we need 4 variables in the `state`:
$$
x = \begin{bmatrix}
x_1 = p_1\\
x_2 = p_2\\
x_3 = \dot{p}_1\\
x_4 = \dot{p}_2
\end{bmatrix}
\dot{x} = \begin{bmatrix}
\dot{x}_1 = \dot{p}_1 = x_3 \\
\dot{x}_2 = \dot{p}_2 = x_4\\
\dot{x}_3 = \ddot{p}_1 =
\frac{1}{m_1} \left[ k_2(x_2 - x_1) + b_2( x_4 - x_3) -
k_1 x_1 - b_1 x_3 \right]\\
\dot{x}_4 = \ddot{p}_2 =
\frac{1}{m_2} \left[ F - k_2(x_2 - x_1) - b_2( x_4 - x_3) \right]\\
\end{bmatrix}
$$
Let's write our $S(A, B, C, D)$:
$$
A = \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
% 3rd row
- \frac{k_2 - k_1}{m_1} &
\frac{k_2}{m_1} &
-\frac{b_2 + b_1}{m_1} &
\frac{b_2}{m_1} \\
% 4th row
\frac{k_2}{m_12} &
- \frac{k_2}{m_2} &
\frac{b_2}{m_2} &
- \frac{b_2}{m_2} \\
\end{bmatrix}
B = \begin{bmatrix}
0 \\
0 \\ 0 \\ 1
\end{bmatrix}
C = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{bmatrix}
D = \begin{bmatrix}
0
\end{bmatrix}
$$
## Suspended Mass
> [!NOTE]
> For those of you the followed CNS course, refer to professor
> PDF for this excercise, as it has some unclear initial conditions
>
> However, in the formulas section, I'll take straight up his own
![suspended mass](./../../Images/Examples/Example-3/suspended-mass.png)
### Formulas
- Resulting forces for mass:\
$
m \ddot{p} = -k(p - r) -b(\dot{p} - \dot{r})
$
### Reasoning
$$
x = \begin{bmatrix}
x_1 = p \\
x_2 = \dot{x}_1
\end{bmatrix}
\dot{x} = \begin{bmatrix}
\dot{x}_1 = x_2 \\
\dot{x}_2 = \frac{1}{m} \left[-k(x_1 - r) -b(x_2 - \dot{r}) \right]
\end{bmatrix}
$$
<!-- TODO: Correct here looking from book -->
> [!WARNING]
> Info here are wrong
Let's write our $S(A, B, C, D)$:
$$
A = \begin{bmatrix}
0 & 1\\
-\frac{k}{m} & - \frac{b}{m}
\end{bmatrix}
B = \begin{bmatrix}
0 \\
\frac{k + sb}{m}
\end{bmatrix}
C = \begin{bmatrix}
1 & 0
\end{bmatrix}
D = \begin{bmatrix}
0 & 0
\end{bmatrix}
$$