1 Commits

Author SHA1 Message Date
GassiGiuseppe
1de2cc59db doctor and model test 2025-10-08 22:51:36 +02:00
69 changed files with 6927 additions and 3076 deletions

Binary file not shown.

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:6e0a193f90f2b0efc5185b0db9555178b172268b3eab289225b894ac1493493f
3 size 2471083

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:dd309865b60df86f63f76341858e382a8423297ec63eb6f525ccd28b62caf486
3 size 2494589

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:2949f2e9c6ae2b4784e04405dd7f5a3ec2eb65537b421fdc6751e9d5a19af41d
3 size 19527224

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:bc28507d806df96d6c953fbba1999f62a55e26025001de5135892069df05b9bc
3 size 22021103

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:176f13b63859c4dc0ca42b94d875aa82b74ad1cd88a186c439ef5444f45ed715
3 size 24455751

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:206f83b88b442f617575985ac88f4241071fa1b7d66b5935405178051511a369
3 size 1344466

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:6914b6b1f8f06f8cf73b96b9c27bf556f1ee93256f435b7da0be0df2af093d05
3 size 1334675

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:41e92da8af52ca1c83334ebea7312c63d37fdeacde425ba91b78f44a56e4fb88
3 size 10568092

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.
1 version https://git-lfs.github.com/spec/v1
2 oid sha256:203b6cb364cf95cbb6cc0ebbff9e8b80e80dda73ff210ad91edeedf6024f6ab1
3 size 2876

Binary file not shown.

Binary file not shown.

Binary file not shown.

File diff suppressed because one or more lines are too long

125
Playgrounds/doctor.py Normal file
View File

@@ -0,0 +1,125 @@
import random
import torch
import pandas as pd
from pathlib import Path
import Project_Model.Libs.Embedder as Embedder
import Project_Model.Libs.BPE as BPE
import Project_Model.Libs.Transformer as Transformer
import Project_Model.Libs.TorchShims as torch_shims
from Project_Model.Libs.Training.learning_rade_shedulers import Custom_lr
from Project_Model.Libs.Training.logistic_collector import LogitsCollector # import the external collector
# set a fixed seed
torch.manual_seed(0)
random.seed(0)
DEVICE = torch_shims.get_default_device()
torch.set_default_device(DEVICE)
# BPE Init
VOCABULARY_PATH = Path("Assets/Model/toy_10/toy_dictionary.json")
SPECIAL_VOC = BPE.default_special_tokens()
VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)
# Constants
TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + 1
EMBEDDED_SIZE = 256
FEED_FORWARD_MULTIPLIER = 4
ATTENTION_HEADS = 4
SENTENCE_LENGTH = 256
NUMBER_OF_BLOCKS = 2
MAX_EPOCHS = int(1e3)
PAD_TOKEN = TOKENANO.encode("<PAD>")[0]
END_TOKEN = TOKENANO.encode("<END>")[0]
# Load CSV
TOY_DATASET_PATH = Path("Assets/Dataset/1-hop/toy/rdf_text.csv")
TOY_DATASET = pd.read_csv(TOY_DATASET_PATH)
TOY_BATCH_INPUT_LIST: list[list[int]] = []
TOY_BATCH_PADDING_LIST: list[list[bool]] = []
TOY_BATCH_TARGET_LIST: list[list[int]] = []
TOY_BATCH_DECODER_DEFAULT: list[list[int]] = []
for index, row in TOY_DATASET.iterrows():
RDFs: str = row["RDFs"]
Abstract: str = row["Abstract"]
input_tokens = TOKENANO.encode(RDFs) # encoder input ids
output_tokens = TOKENANO.encode(Abstract)[1:] # decoder target ids (shifted left)
decoder_default_tokens = TOKENANO.encode("<SOS>") # decoder input starts with <SOS>
input_tokens, padding = Transformer.normalize_sequence(
input_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN
) # pad/trim + end token
output_tokens, _ = Transformer.normalize_sequence(
output_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN
) # pad/trim + end token
decoder_default_tokens = Transformer.pad_sequence(
decoder_default_tokens, SENTENCE_LENGTH, PAD_TOKEN
) # pad with PAD up to SENTENCE_LENGTH
TOY_BATCH_INPUT_LIST.append(input_tokens)
TOY_BATCH_PADDING_LIST.append(padding)
TOY_BATCH_TARGET_LIST.append(output_tokens)
TOY_BATCH_DECODER_DEFAULT.append(decoder_default_tokens)
# Training loop
LOSS_HISTORY = []
NANOSOCRATES = Transformer.TrainingModel(
TOKEN_SPACE_SIZE,
EMBEDDED_SIZE,
FEED_FORWARD_MULTIPLIER,
ATTENTION_HEADS,
NUMBER_OF_BLOCKS,
)
collector = LogitsCollector(PAD_TOKEN, END_TOKEN, TOKENANO) # collects logits and decodes
NANOSOCRATES.train()
cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)
optimizer = torch.optim.AdamW(NANOSOCRATES.parameters())
scheduler = Custom_lr(EMBEDDED_SIZE, 4000) # step each optimizer step
current_epoch = 0
BATCH_SIZE = min(32, len(TOY_BATCH_INPUT_LIST)) # small batch to stabilize
while current_epoch < MAX_EPOCHS:
# simple fixed mini-batch from the top; later you can shuffle/slice
enc = torch.tensor(TOY_BATCH_INPUT_LIST[:BATCH_SIZE], dtype=torch.long) # [B,T] encoder token ids
pad = torch.tensor(TOY_BATCH_PADDING_LIST[:BATCH_SIZE], dtype=torch.bool) # [B,T] True where encoder PAD is present
tgt = torch.tensor(TOY_BATCH_TARGET_LIST[:BATCH_SIZE], dtype=torch.long) # [B,T] decoder targets (ground-truth)
# decoder prefix buffer: <SOS> at pos 0, PAD elsewhere (no shift here) # we will fill it step by step
dec = torch.tensor(TOY_BATCH_DECODER_DEFAULT[:BATCH_SIZE], dtype=torch.long) # [B,T]
total_loss = 0.0
collector.reset() # start fresh for this epoch
T = tgt.size(1) # sequence length
for t in range(T):
optimizer.zero_grad(set_to_none=True) # clear grads for this token step
prefix = dec[:, : t + 1] # [B, t+1] current decoder prefix
dec_pad_mask = prefix.eq(PAD_TOKEN) # [B, t+1] True where PAD inside prefix
# one-step logits given prefix (trainer model expects 4 args now)
logits_t: torch.Tensor = NANOSOCRATES((enc, pad, prefix, dec_pad_mask)) # [B,V] logits for step t
collector.add(logits_t) # store logits for decoding later
loss_t = cross_entropy(logits_t, tgt[:, t]) # CE expects raw logits; PAD ignored
loss_t.backward() # backprop for this step
optimizer.step() # update params
scheduler.step() # Noam/warmup: step per optimizer step
total_loss = float(loss_t.detach()) # keep last step loss for logging
# teacher forcing: reveal the correct token for next position
if t < T - 1:
dec[:, t + 1] = tgt[:, t] # write ground-truth into next slot
current_epoch += 1
print(f"EPOCH {current_epoch}\n\tLoss: {total_loss:.6f}") # simple log
collector.print_decoded() # print decoded predictions for the batch

View File

@@ -1,263 +0,0 @@
import random
import torch
from pathlib import Path
import Project_Model.Libs.BPE as BPE
import Project_Model.Libs.Transformer as Transformer
import Project_Model.Libs.TransformerUtils as TUtils
import Project_Model.Libs.TorchShims as torch_shims
import Project_Model.Libs.Batch as Batch
# set a default device
DEVICE = torch_shims.get_default_device()
torch.set_default_device(DEVICE)
# set a fixed seed
torch.manual_seed(0)
random.seed(0)
# Get paths
MODEL_DIR = "Assets/Model/curated"
# MODEL_DIR= "Assets/Dataset/Tmp"
VOCABULARY_PATH = Path("Assets/Model/small/bpe-small-16.json")
TRAIN_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/train.csv")
VALIDATION_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/evaluation.csv")
TEST_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/test.csv")
# TEST_DATASET_PATH = Path("Assets/Dataset/1-hop/toy/rdf_text.csv")
MODEL_PATH = Path(f"{MODEL_DIR}/NanoSocrates.zip")
# BPE Init
SPECIAL_VOC = BPE.default_special_tokens()
VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)
# Constants
MASK_EXTRA_SPACE = 100
REAL_TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size
TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + MASK_EXTRA_SPACE
EMBEDDED_SIZE = 256
FEED_FORWARD_MULTIPLIER = 4
ATTENTION_HEADS = 4
SENTENCE_LENGTH = 256
NUMBER_OF_BLOCKS = 2
SOS_TOKEN = TOKENANO.encode("<SOS>")[0]
PAD_TOKEN = TOKENANO.encode("<PAD>")[0]
END_TOKEN = TOKENANO.encode("<EOS>")[0]
SUBJ_TOKEN = TOKENANO.encode("<SUBJ>")[0]
REL_TOKEN = TOKENANO.encode("<PRED>")[0]
OBJ_TOKEN = TOKENANO.encode("<OBJ>")[0]
MASK_TOKEN = TOKENANO.encode("<MASK>")[0]
CONTINUTE_TOKEN = TOKENANO.encode("<CONTINUERDF>")[0]
SPECIAL_TOKENS: set[int] = set(TOKENANO.encode("".join(BPE.default_special_tokens())))
ALLOWED_TOKENS = set([SUBJ_TOKEN, REL_TOKEN, OBJ_TOKEN])
FORBIDDEN_TOKENS = SPECIAL_TOKENS - ALLOWED_TOKENS
# Spanned_Masker
MASKER = Transformer.SpannedMasker(REAL_TOKEN_SPACE_SIZE, FORBIDDEN_TOKENS, average_span=4)
TRAIN_BATCHER = Batch.Batcher(TRAIN_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER)
VALIDATION_BATCHER = Batch.Batcher(
VALIDATION_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER
)
TEST_BATCHER = Batch.Batcher(TEST_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER, debug=True)
# Model
NANOSOCRATES_TRAIN = Transformer.TrainingModel(
TOKEN_SPACE_SIZE,
EMBEDDED_SIZE,
FEED_FORWARD_MULTIPLIER,
ATTENTION_HEADS,
NUMBER_OF_BLOCKS,
)
NANOSOCRATES = Transformer.NanoSocratesCore(
TOKEN_SPACE_SIZE,
SENTENCE_LENGTH,
SOS_TOKEN,
PAD_TOKEN,
END_TOKEN,
CONTINUTE_TOKEN,
EMBEDDED_SIZE,
FEED_FORWARD_MULTIPLIER,
ATTENTION_HEADS,
NUMBER_OF_BLOCKS,
)
if MODEL_PATH.is_file():
nanosocrates_dict = torch.load(MODEL_PATH, weights_only=True, map_location=DEVICE)
NANOSOCRATES_TRAIN.load_state_dict(nanosocrates_dict)
_, ENCODER_ONLY, DECODER_ONLY = TUtils.decompose_nano_socrates(
NANOSOCRATES, TOKEN_SPACE_SIZE, EMBEDDED_SIZE
)
NANOSOCRATES = TUtils.train2inference(
NANOSOCRATES_TRAIN,
NANOSOCRATES
)
NANOSOCRATES.eval()
ENCODER_ONLY.eval()
DECODER_ONLY.eval()
NANOSOCRATES_TRAIN.eval()
task_1_metrics = []
task_2_metrics = []
task_3_metrics = []
task_4_metrics = []
example_num = 0
with torch.no_grad():
for example in TEST_BATCHER.batch(1):
print(f"DOING Example: {example_num}")
src_x, tgt_y, pad_x, pad_y, tasktype = example
enc_x = torch.tensor(src_x)
ACTUAL_BATCH_SIZE, _ = enc_x.shape
enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)
tgt = torch.tensor(tgt_y)
tgt_pad = torch.tensor(pad_y, dtype=torch.bool)
dec_x = Transformer.get_decoder_input(
ACTUAL_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH
)
dec_x[:, 1:] = tgt[:, :-1]
dec_x_pad = dec_x.eq(PAD_TOKEN)
out: torch.Tensor = NANOSOCRATES.inference((enc_x, enc_x_pad), tasktype)
tokens: list[int] = out.tolist()[0]
tokens.append(END_TOKEN)
tokens = list(map(lambda x: MASK_TOKEN if x > TOKENANO.vocabulary_size else x, tokens))
out_string = TOKENANO.decode(tokens)
exp_tokens: list[int] = tgt_y[0]
exp_tokens = list(map(lambda x: MASK_TOKEN if x > TOKENANO.vocabulary_size else x, exp_tokens))
exp_string = TOKENANO.decode(exp_tokens)
enc_tokens: list[int] = src_x[0]
enc_tokens = list(map(lambda x: MASK_TOKEN if x > TOKENANO.vocabulary_size else x, enc_tokens))
enc_string = TOKENANO.decode(enc_tokens)
print(f"PROMPT:\n{enc_string}")
print(f"EXPECTED:\n{exp_string}")
print(f"ACTUAL:\n{out_string}")
if tasktype == Batch.TaskType.RDF2TXT:
example_num += 1
ref = TUtils.remove_padding(exp_tokens, PAD_TOKEN, END_TOKEN)
pred = TUtils.remove_padding(tokens, PAD_TOKEN, END_TOKEN)
ref_str = TOKENANO.decode(ref)
pred_str = TOKENANO.decode(pred)
bleu, rouge, meteor = TUtils.rdf2txt([ref_str], [pred_str])
task_1_metrics.append(
[
bleu["bleu"], rouge["rougeL"], meteor["meteor"] # type: ignore
]
)
if tasktype == Batch.TaskType.TEXT2RDF:
ref = TUtils.remove_padding(exp_tokens, PAD_TOKEN, END_TOKEN)
pred = TUtils.remove_padding(tokens[1:], PAD_TOKEN, END_TOKEN)
ref, pred = TUtils.balance_paddings(ref, pred, PAD_TOKEN)
precision, recall = TUtils.txt2rdf(ref, pred)
task_2_metrics.append(
[
precision["precision"], recall["recall"] # type: ignore
]
)
if tasktype == Batch.TaskType.MASKING:
ref = TUtils.remove_padding(exp_tokens, PAD_TOKEN, END_TOKEN)
pred = TUtils.remove_padding(tokens, PAD_TOKEN, END_TOKEN)
ref, pred = TUtils.balance_paddings(ref, pred, PAD_TOKEN)
accuracy = TUtils.accuracy(ref, pred)
task_3_metrics.append(
accuracy["accuracy"] # type: ignore
)
if tasktype == Batch.TaskType.COMPLETATION:
ref = TUtils.remove_padding(exp_tokens, PAD_TOKEN, END_TOKEN)
pred = TUtils.remove_padding(tokens, PAD_TOKEN, END_TOKEN)
ref, pred = TUtils.balance_paddings(ref, pred, PAD_TOKEN)
precision, recall = TUtils.txt2rdf(ref, pred)
task_4_metrics.append(
[
precision["precision"], recall["recall"] # type: ignore
]
)
bleus = [row[0] for row in task_1_metrics]
rouges = [row[1] for row in task_1_metrics]
meteors = [row[2] for row in task_1_metrics]
prec_1 = [row[0] for row in task_2_metrics]
rec_1 = [row[1] for row in task_2_metrics]
acc = task_3_metrics
prec_2 = [row[0] for row in task_4_metrics]
rec_2 = [row[1] for row in task_4_metrics]
BLEU = TUtils.average(bleus)
ROUGE = TUtils.average(rouges)
METEOR = TUtils.average(meteors)
PREC_1 = TUtils.average(prec_1)
REC_1 = TUtils.average(rec_1)
F1_1 = TUtils.f1(PREC_1, REC_1)
ACC = TUtils.average(acc)
PREC_2 = TUtils.average(prec_2)
REC_2 = TUtils.average(rec_2)
F1_2 = TUtils.f1(PREC_2, REC_2)
SEPARATOR = "**************************************************************************"
OUTPUT = "".join([
f"{SEPARATOR}\n",
"*\tRDF2TXT:\n",
f"*\t\tBLEU: {BLEU} - ROUGE: {ROUGE} - METEOR: {METEOR}\n"
f"{SEPARATOR}\n",
"*\tTXT2RDF:\n",
f"*\t\tPRECISION: {PREC_1} - RECALL: {REC_1} - F1: {F1_1}\n"
f"{SEPARATOR}\n",
"*\tRDF Completion 1:\n",
f"*\t\tACCURACY: {ACC}\n"
f"{SEPARATOR}\n",
"*\tRDF Completion 2:\n",
f"*\t\tPRECISION: {PREC_2} - RECALL: {REC_2} - F1: {F1_2}\n"
f"{SEPARATOR}\n",
""
])
print(OUTPUT)
print("\nDEBUG")
print(task_1_metrics)
print(task_2_metrics)
print(task_3_metrics)
print(task_4_metrics)

View File

@@ -0,0 +1,221 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "c8741a8f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"EPOCH 1\n",
"\tLoss: 7.424792\n",
"[0] \n",
"[1] \n",
"[2] \n",
"[3] \n",
"[4] \n",
"[5] \n",
"[6] \n",
"[7] \n",
"[8] \n",
"[9] \n"
]
}
],
"source": [
"import random\n",
"import torch\n",
"import pandas as pd\n",
"from pathlib import Path\n",
"import Project_Model.Libs.Embedder as Embedder\n",
"import Project_Model.Libs.BPE as BPE\n",
"import Project_Model.Libs.Transformer as Transformer\n",
"import Project_Model.Libs.TorchShims as torch_shims\n",
"from Project_Model.Libs.Training.learning_rade_shedulers import Custom_lr\n",
"\n",
"import torch\n",
"\n",
"class LogitsCollector:\n",
" def __init__(self, pad_token: int, end_token: int, tokenizer) -> None:\n",
" self.__pad_token = pad_token # used to skip PAD\n",
" self.__end_token = end_token # used to stop at END\n",
" self.__tokenizer = tokenizer # exposes .decode(list[int]) -> str\n",
" self.__steps: list[torch.Tensor] = [] # list of per-step logits [B,V]\n",
"\n",
" def reset(self) -> None:\n",
" self.__steps.clear() # clear history\n",
"\n",
" def add(self, logits_step: torch.Tensor) -> None:\n",
" if logits_step.dim() == 3: # handle [B,1,V]\n",
" logits_step = logits_step[:, -1, :] # -> [B,V]\n",
" self.__steps.append(logits_step.detach()) # store raw logits (detached)\n",
"\n",
" def tokens(self) -> list[list[int]]:\n",
" if not self.__steps:\n",
" return []\n",
" stack = torch.stack(self.__steps, dim=0) # [T,B,V]\n",
" probs = torch.softmax(stack, dim=-1) # softmax over vocab -> [T,B,V]\n",
" ids = probs.argmax(dim=-1).transpose(0, 1) # greedy ids -> [B,T]\n",
" out: list[list[int]] = []\n",
" for row in ids.tolist():\n",
" seq: list[int] = []\n",
" for tok in row:\n",
" if tok == self.__end_token: # stop on END\n",
" break\n",
" if tok == self.__pad_token: # skip PAD\n",
" continue\n",
" seq.append(tok)\n",
" out.append(seq)\n",
" return out\n",
"\n",
" def print_decoded(self) -> None:\n",
" for i, seq in enumerate(self.tokens()):\n",
" try:\n",
" text = self.__tokenizer.decode(seq) # decode tokens to string\n",
" except Exception:\n",
" text = str(seq) # fallback to ids\n",
" print(f\"[{i}] {text}\") # simple print\n",
"\n",
"\n",
"# set a fixed seed\n",
"torch.manual_seed(0)\n",
"random.seed(0)\n",
"DEVICE = torch_shims.get_default_device()\n",
"torch.set_default_device(DEVICE)\n",
"\n",
"# BPE Init\n",
"VOCABULARY_PATH = Path(\"Assets/Model/toy_10/toy_dictionary.json\")\n",
"SPECIAL_VOC = BPE.default_special_tokens()\n",
"\n",
"VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)\n",
"TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)\n",
"\n",
"# Constants\n",
"TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + 1\n",
"EMBEDDED_SIZE = 256\n",
"FEED_FORWARD_MULTIPLIER = 4\n",
"ATTENTION_HEADS = 4\n",
"SENTENCE_LENGTH = 256\n",
"NUMBER_OF_BLOCKS = 2\n",
"MAX_EPOCHS = int(1e3)\n",
"\n",
"PAD_TOKEN = TOKENANO.encode(\"<PAD>\")[0]\n",
"END_TOKEN = TOKENANO.encode(\"<END>\")[0]\n",
"\n",
"# Load CSV\n",
"TOY_DATASET_PATH = Path(\"Assets/Dataset/1-hop/toy/rdf_text.csv\")\n",
"TOY_DATASET = pd.read_csv(TOY_DATASET_PATH)\n",
"\n",
"TOY_BATCH_INPUT_LIST: list[list[int]] = []\n",
"TOY_BATCH_PADDING_LIST: list[list[bool]] = []\n",
"TOY_BATCH_TARGET_LIST: list[list[int]] = []\n",
"TOY_BATCH_DECODER_DEFAULT: list[list[int]] = []\n",
"\n",
"for index, row in TOY_DATASET.iterrows():\n",
" RDFs: str = row[\"RDFs\"]\n",
" Abstract: str = row[\"Abstract\"]\n",
"\n",
" input_tokens = TOKENANO.encode(RDFs) # encoder input ids\n",
" output_tokens = TOKENANO.encode(Abstract)[1:] # decoder target ids (shifted left)\n",
" decoder_default_tokens = TOKENANO.encode(\"<SOS>\") # decoder input starts with <SOS>\n",
"\n",
" input_tokens, padding = Transformer.normalize_sequence(\n",
" input_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN\n",
" ) # pad/trim + end token\n",
" output_tokens, _ = Transformer.normalize_sequence(\n",
" output_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN\n",
" ) # pad/trim + end token\n",
" decoder_default_tokens = Transformer.pad_sequence(\n",
" decoder_default_tokens, SENTENCE_LENGTH, PAD_TOKEN\n",
" ) # pad with PAD up to SENTENCE_LENGTH\n",
"\n",
" TOY_BATCH_INPUT_LIST.append(input_tokens)\n",
" TOY_BATCH_PADDING_LIST.append(padding)\n",
" TOY_BATCH_TARGET_LIST.append(output_tokens)\n",
" TOY_BATCH_DECODER_DEFAULT.append(decoder_default_tokens)\n",
"\n",
"# Training loop\n",
"LOSS_HISTORY = []\n",
"NANOSOCRATES = Transformer.TrainingModel(\n",
" TOKEN_SPACE_SIZE,\n",
" EMBEDDED_SIZE,\n",
" FEED_FORWARD_MULTIPLIER,\n",
" ATTENTION_HEADS,\n",
" NUMBER_OF_BLOCKS,\n",
")\n",
"\n",
"collector = LogitsCollector(PAD_TOKEN, END_TOKEN, TOKENANO) # collects logits and decodes\n",
"\n",
"NANOSOCRATES.train()\n",
"cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)\n",
"optimizer = torch.optim.AdamW(NANOSOCRATES.parameters())\n",
"scheduler = Custom_lr(EMBEDDED_SIZE, 4000) # step each optimizer step\n",
"\n",
"current_epoch = 0\n",
"BATCH_SIZE = min(32, len(TOY_BATCH_INPUT_LIST)) # small batch to stabilize\n",
"\n",
"while current_epoch < MAX_EPOCHS:\n",
" # simple fixed mini-batch from the top; later you can shuffle/slice\n",
" enc = torch.tensor(TOY_BATCH_INPUT_LIST[:BATCH_SIZE], dtype=torch.long) # [B,T] encoder token ids\n",
" pad = torch.tensor(TOY_BATCH_PADDING_LIST[:BATCH_SIZE], dtype=torch.bool) # [B,T] True where encoder PAD is present\n",
" tgt = torch.tensor(TOY_BATCH_TARGET_LIST[:BATCH_SIZE], dtype=torch.long) # [B,T] decoder targets (ground-truth)\n",
"\n",
" # decoder prefix buffer: <SOS> at pos 0, PAD elsewhere (no shift here) # we will fill it step by step\n",
" dec = torch.tensor(TOY_BATCH_DECODER_DEFAULT[:BATCH_SIZE], dtype=torch.long) # [B,T]\n",
"\n",
" total_loss = 0.0\n",
" collector.reset() # start fresh for this epoch\n",
"\n",
" T = tgt.size(1) # sequence length\n",
" for t in range(T):\n",
" optimizer.zero_grad(set_to_none=True) # clear grads for this token step\n",
"\n",
" prefix = dec[:, : t + 1] # [B, t+1] current decoder prefix\n",
" dec_pad_mask = prefix.eq(PAD_TOKEN) # [B, t+1] True where PAD inside prefix\n",
"\n",
" # one-step logits given prefix (trainer model expects 4 args now)\n",
" logits_t: torch.Tensor = NANOSOCRATES((enc, pad, prefix, dec_pad_mask)) # [B,V] logits for step t\n",
" collector.add(logits_t) # store logits for decoding later\n",
"\n",
" loss_t = cross_entropy(logits_t, tgt[:, t]) # CE expects raw logits; PAD ignored\n",
" loss_t.backward() # backprop for this step\n",
" optimizer.step() # update params\n",
" scheduler.step() # Noam/warmup: step per optimizer step\n",
"\n",
" total_loss = float(loss_t.detach()) # keep last step loss for logging\n",
"\n",
" # teacher forcing: reveal the correct token for next position\n",
" if t < T - 1:\n",
" dec[:, t + 1] = tgt[:, t] # write ground-truth into next slot\n",
"\n",
" current_epoch += 1\n",
" print(f\"EPOCH {current_epoch}\\n\\tLoss: {total_loss:.6f}\") # simple log\n",
" collector.print_decoded() # print decoded predictions for the batch\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deep_learning",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,205 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "0afbf498",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"EPOCH 1\n",
"\tLoss: 9.174470901489258\n",
"EPOCH 2\n",
"\tLoss: 9.20919132232666\n",
"EPOCH 3\n",
"\tLoss: 9.227106094360352\n",
"EPOCH 4\n",
"\tLoss: 9.172086715698242\n",
"EPOCH 5\n",
"\tLoss: 9.180150985717773\n"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
"\u001b[31mKeyboardInterrupt\u001b[39m Traceback (most recent call last)",
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[1]\u001b[39m\u001b[32m, line 116\u001b[39m\n\u001b[32m 113\u001b[39m step_target = target_logits[:, i] \u001b[38;5;66;03m# [B]\u001b[39;00m\n\u001b[32m 115\u001b[39m loss = cross_entropy(step_logits,step_target) \u001b[38;5;66;03m# now loss is without softmax\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m116\u001b[39m \u001b[43mloss\u001b[49m\u001b[43m.\u001b[49m\u001b[43mbackward\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMN\u001b[39;00m\n\u001b[32m 117\u001b[39m last_loss = loss\n\u001b[32m 118\u001b[39m optimizer.step()\n",
"\u001b[36mFile \u001b[39m\u001b[32m~/miniconda3/envs/deep_learning/lib/python3.13/site-packages/torch/_tensor.py:638\u001b[39m, in \u001b[36mTensor.backward\u001b[39m\u001b[34m(self, gradient, retain_graph, create_graph, inputs)\u001b[39m\n\u001b[32m 595\u001b[39m \u001b[38;5;250m\u001b[39m\u001b[33mr\u001b[39m\u001b[33;03m\"\"\"Computes the gradient of current tensor wrt graph leaves.\u001b[39;00m\n\u001b[32m 596\u001b[39m \n\u001b[32m 597\u001b[39m \u001b[33;03mThe graph is differentiated using the chain rule. If the tensor is\u001b[39;00m\n\u001b[32m (...)\u001b[39m\u001b[32m 635\u001b[39m \u001b[33;03m used to compute the :attr:`tensors`. Defaults to ``None``.\u001b[39;00m\n\u001b[32m 636\u001b[39m \u001b[33;03m\"\"\"\u001b[39;00m\n\u001b[32m 637\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m has_torch_function_unary(\u001b[38;5;28mself\u001b[39m):\n\u001b[32m--> \u001b[39m\u001b[32m638\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mhandle_torch_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 639\u001b[39m \u001b[43m \u001b[49m\u001b[43mTensor\u001b[49m\u001b[43m.\u001b[49m\u001b[43mbackward\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 640\u001b[39m \u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 641\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 642\u001b[39m \u001b[43m \u001b[49m\u001b[43mgradient\u001b[49m\u001b[43m=\u001b[49m\u001b[43mgradient\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 643\u001b[39m \u001b[43m \u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m=\u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 644\u001b[39m \u001b[43m \u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m=\u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 645\u001b[39m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m=\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 646\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 647\u001b[39m torch.autograd.backward(\n\u001b[32m 648\u001b[39m \u001b[38;5;28mself\u001b[39m, gradient, retain_graph, create_graph, inputs=inputs\n\u001b[32m 649\u001b[39m )\n",
"\u001b[36mFile \u001b[39m\u001b[32m~/miniconda3/envs/deep_learning/lib/python3.13/site-packages/torch/overrides.py:1725\u001b[39m, in \u001b[36mhandle_torch_function\u001b[39m\u001b[34m(public_api, relevant_args, *args, **kwargs)\u001b[39m\n\u001b[32m 1721\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m _is_torch_function_mode_enabled():\n\u001b[32m 1722\u001b[39m \u001b[38;5;66;03m# if we're here, the mode must be set to a TorchFunctionStackMode\u001b[39;00m\n\u001b[32m 1723\u001b[39m \u001b[38;5;66;03m# this unsets it and calls directly into TorchFunctionStackMode's torch function\u001b[39;00m\n\u001b[32m 1724\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m _pop_mode_temporarily() \u001b[38;5;28;01mas\u001b[39;00m mode:\n\u001b[32m-> \u001b[39m\u001b[32m1725\u001b[39m result = \u001b[43mmode\u001b[49m\u001b[43m.\u001b[49m\u001b[43m__torch_function__\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpublic_api\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtypes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1726\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m result \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mNotImplemented\u001b[39m:\n\u001b[32m 1727\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m result\n",
"\u001b[36mFile \u001b[39m\u001b[32m~/miniconda3/envs/deep_learning/lib/python3.13/site-packages/torch/utils/_device.py:103\u001b[39m, in \u001b[36mDeviceContext.__torch_function__\u001b[39m\u001b[34m(self, func, types, args, kwargs)\u001b[39m\n\u001b[32m 101\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m func \u001b[38;5;129;01min\u001b[39;00m _device_constructors() \u001b[38;5;129;01mand\u001b[39;00m kwargs.get(\u001b[33m\"\u001b[39m\u001b[33mdevice\u001b[39m\u001b[33m\"\u001b[39m) \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[32m 102\u001b[39m kwargs[\u001b[33m\"\u001b[39m\u001b[33mdevice\u001b[39m\u001b[33m\"\u001b[39m] = \u001b[38;5;28mself\u001b[39m.device\n\u001b[32m--> \u001b[39m\u001b[32m103\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[36mFile \u001b[39m\u001b[32m~/miniconda3/envs/deep_learning/lib/python3.13/site-packages/torch/_tensor.py:647\u001b[39m, in \u001b[36mTensor.backward\u001b[39m\u001b[34m(self, gradient, retain_graph, create_graph, inputs)\u001b[39m\n\u001b[32m 637\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m has_torch_function_unary(\u001b[38;5;28mself\u001b[39m):\n\u001b[32m 638\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m handle_torch_function(\n\u001b[32m 639\u001b[39m Tensor.backward,\n\u001b[32m 640\u001b[39m (\u001b[38;5;28mself\u001b[39m,),\n\u001b[32m (...)\u001b[39m\u001b[32m 645\u001b[39m inputs=inputs,\n\u001b[32m 646\u001b[39m )\n\u001b[32m--> \u001b[39m\u001b[32m647\u001b[39m \u001b[43mtorch\u001b[49m\u001b[43m.\u001b[49m\u001b[43mautograd\u001b[49m\u001b[43m.\u001b[49m\u001b[43mbackward\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 648\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgradient\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m=\u001b[49m\u001b[43minputs\u001b[49m\n\u001b[32m 649\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[36mFile \u001b[39m\u001b[32m~/miniconda3/envs/deep_learning/lib/python3.13/site-packages/torch/autograd/__init__.py:354\u001b[39m, in \u001b[36mbackward\u001b[39m\u001b[34m(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)\u001b[39m\n\u001b[32m 349\u001b[39m retain_graph = create_graph\n\u001b[32m 351\u001b[39m \u001b[38;5;66;03m# The reason we repeat the same comment below is that\u001b[39;00m\n\u001b[32m 352\u001b[39m \u001b[38;5;66;03m# some Python versions print out the first line of a multi-line function\u001b[39;00m\n\u001b[32m 353\u001b[39m \u001b[38;5;66;03m# calls in the traceback and some print out the last line\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m354\u001b[39m \u001b[43m_engine_run_backward\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 355\u001b[39m \u001b[43m \u001b[49m\u001b[43mtensors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 356\u001b[39m \u001b[43m \u001b[49m\u001b[43mgrad_tensors_\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 357\u001b[39m \u001b[43m \u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 358\u001b[39m \u001b[43m \u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 359\u001b[39m \u001b[43m \u001b[49m\u001b[43minputs_tuple\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 360\u001b[39m \u001b[43m \u001b[49m\u001b[43mallow_unreachable\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[32m 361\u001b[39m \u001b[43m \u001b[49m\u001b[43maccumulate_grad\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[32m 362\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[36mFile \u001b[39m\u001b[32m~/miniconda3/envs/deep_learning/lib/python3.13/site-packages/torch/autograd/graph.py:829\u001b[39m, in \u001b[36m_engine_run_backward\u001b[39m\u001b[34m(t_outputs, *args, **kwargs)\u001b[39m\n\u001b[32m 827\u001b[39m unregister_hooks = _register_logging_hooks_on_whole_graph(t_outputs)\n\u001b[32m 828\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m829\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mVariable\u001b[49m\u001b[43m.\u001b[49m\u001b[43m_execution_engine\u001b[49m\u001b[43m.\u001b[49m\u001b[43mrun_backward\u001b[49m\u001b[43m(\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# Calls into the C++ engine to run the backward pass\u001b[39;49;00m\n\u001b[32m 830\u001b[39m \u001b[43m \u001b[49m\u001b[43mt_outputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\n\u001b[32m 831\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# Calls into the C++ engine to run the backward pass\u001b[39;00m\n\u001b[32m 832\u001b[39m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[32m 833\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m attach_logging_hooks:\n",
"\u001b[31mKeyboardInterrupt\u001b[39m: "
]
}
],
"source": [
"import random\n",
"import torch\n",
"import pandas as pd\n",
"from pathlib import Path\n",
"import Project_Model.Libs.Embedder as Embedder\n",
"import Project_Model.Libs.BPE as BPE\n",
"import Project_Model.Libs.Transformer as Transformer\n",
"import Project_Model.Libs.TorchShims as torch_shims\n",
"\n",
"# set a fixed seed\n",
"torch.manual_seed(0)\n",
"random.seed(0)\n",
"DEVICE = torch_shims.get_default_device()\n",
"torch.set_default_device(DEVICE)\n",
"\n",
"# set a default device\n",
"\n",
"# BPE Init\n",
"VOCABULARY_PATH = Path(\"Assets/Model/toy_10/toy_dictionary.json\")\n",
"SPECIAL_VOC = BPE.default_special_tokens()\n",
"\n",
"VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)\n",
"TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)\n",
"\n",
"\n",
"# Constants\n",
"TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + 1\n",
"EMBEDDED_SIZE = 256\n",
"FEED_FORWARD_MULTIPLIER = 4\n",
"ATTENTION_HEADS = 4\n",
"SENTENCE_LENGTH = 256\n",
"NUMBER_OF_BLOCKS = 2\n",
"MAX_EPOCHS = int(1e3)\n",
"\n",
"\n",
"PAD_TOKEN = TOKENANO.encode(\"<PAD>\")[0]\n",
"END_TOKEN = TOKENANO.encode(\"<END>\")[0]\n",
"\n",
"\n",
"# Load CSV\n",
"TOY_DATASET_PATH = Path(\"Assets/Dataset/1-hop/toy/rdf_text.csv\")\n",
"\n",
"TOY_DATASET = pd.read_csv(TOY_DATASET_PATH)\n",
"\n",
"TOY_BATCH_INPUT_LIST: list[list[int]] = []\n",
"TOY_BATCH_PADDING_LIST: list[list[bool]] = []\n",
"TOY_BATCH_TARGET_LIST: list[list[int]] = []\n",
"TOY_BATCH_DECODER_DEFAULT: list[list[int]]= []\n",
"\n",
"\n",
"for index, row in TOY_DATASET.iterrows():\n",
"\n",
" RDFs: str = row[\"RDFs\"]\n",
" Abstract: str = row[\"Abstract\"]\n",
"\n",
" input_tokens = TOKENANO.encode(RDFs)\n",
" output_tokens = TOKENANO.encode(Abstract)[1:]\n",
" decoder_default_tokens = TOKENANO.encode(\"<SOS>\")\n",
"\n",
" input_tokens, padding = Transformer.normalize_sequence(\n",
" input_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN\n",
" )\n",
" output_tokens, _ = Transformer.normalize_sequence(\n",
" output_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN\n",
" )\n",
" decoder_default_tokens, _ = Transformer.normalize_sequence(\n",
" decoder_default_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN\n",
" )\n",
"\n",
" TOY_BATCH_INPUT_LIST.append(input_tokens)\n",
" TOY_BATCH_PADDING_LIST.append(padding)\n",
" TOY_BATCH_TARGET_LIST.append(output_tokens)\n",
" TOY_BATCH_DECODER_DEFAULT.append(decoder_default_tokens)\n",
"\n",
"# Training loop\n",
"LOSS_HISTORY = []\n",
"NANOSOCRATES = Transformer.TrainingModel(\n",
" TOKEN_SPACE_SIZE,\n",
" EMBEDDED_SIZE,\n",
" FEED_FORWARD_MULTIPLIER,\n",
" ATTENTION_HEADS,\n",
" NUMBER_OF_BLOCKS\n",
")\n",
"\n",
"NANOSOCRATES.train() # nothing important, activates dropout etc \n",
"cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)\n",
"optimizer = torch.optim.AdamW(NANOSOCRATES.parameters())\n",
"scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 4)\n",
"\n",
"last_loss = 0\n",
"\n",
"current_epoch = 0\n",
"while current_epoch < MAX_EPOCHS:\n",
"\n",
" encoder_list = torch.tensor([TOY_BATCH_INPUT_LIST[0]])\n",
" decoder_list = torch.tensor([TOY_BATCH_DECODER_DEFAULT[0]])\n",
" padding_list = torch.tensor([TOY_BATCH_PADDING_LIST[0]], dtype=torch.bool)\n",
" target_logits = torch.tensor([TOY_BATCH_TARGET_LIST[0]]) # Transform target into logits\n",
"\n",
" optimizer.zero_grad() # to clear gradient\n",
"\n",
" last_loss = 0.0\n",
"\n",
" for i in range(0, SENTENCE_LENGTH):\n",
"\n",
" # optimizer.zero_grad()\n",
" # forward \n",
" logits: torch.Tensor = NANOSOCRATES((encoder_list, padding_list, decoder_list))\n",
" # probabilities = torch.softmax(logits,2)\n",
" \n",
"\n",
" step_logits = logits[:, i, :] # [B, V]\n",
" step_target = target_logits[:, i] # [B]\n",
"\n",
" loss = cross_entropy(step_logits,step_target) # now loss is without softmax\n",
" loss.backward() # DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMN\n",
" last_loss = loss\n",
" optimizer.step()\n",
" optimizer.zero_grad()\n",
" scheduler.step()\n",
" \n",
" probabilities = torch.softmax(logits,2)\n",
" most_probable_tokens = torch.argmax(probabilities, 2) \n",
" if i < SENTENCE_LENGTH - 1:\n",
" decoder_list[:,i+1] = most_probable_tokens[:,i]\n",
"\n",
"\n",
" current_epoch += 1\n",
"\n",
" if current_epoch % 1 == 0:\n",
" print(f\"EPOCH {current_epoch}\\n\\tLoss: {last_loss}\")\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deep_learning",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,472 +0,0 @@
import random
import sys
import torch
import pandas as pd
from pathlib import Path
import Project_Model.Libs.Embedder as Embedder
import Project_Model.Libs.BPE as BPE
import Project_Model.Libs.Transformer as Transformer
import Project_Model.Libs.TransformerUtils as TUtils
import Project_Model.Libs.TorchShims as torch_shims
import Project_Model.Libs.Batch as Batch
from Project_Model.Libs.Training.loss_saver import Log
# set a fixed seed
torch.manual_seed(0)
random.seed(0)
# set a default device
DEVICE = torch_shims.get_default_device()
torch.set_default_device(DEVICE)
# Get paths
CHECKPOINT_DIR = "Assets/Dataset/Tmp"
VOCABULARY_PATH = Path("Assets/Model/small/bpe-small-16.json")
TRAIN_DATASET_PATH = Path("Assets/Dataset/1-hop/toy/rdf_text.csv")
VALIDATION_DATASET_PATH = Path("Assets/Dataset/1-hop/toy/rdf_text.csv")
TEST_DATASET_PATH = Path("Assets/Dataset/1-hop/toy/rdf_text.csv")
CHECKPOINT_PATH = Path(f"{CHECKPOINT_DIR}/NanoSocrates.zip")
NANO_OPTIM_PATH = Path(f"{CHECKPOINT_DIR}/nano_optim.zip")
ENC_OPTIM_PATH = Path(f"{CHECKPOINT_DIR}/enc_optim.zip")
DEC_OPTIM_PATH = Path(f"{CHECKPOINT_DIR}/dec_optim.zip")
LAST_EPOCH_PATH = Path(f"{CHECKPOINT_DIR}/last_epoch.txt")
# log saver:
loss_saver = Log(f"{CHECKPOINT_DIR}/log_loss.csv")
# BPE Init
SPECIAL_VOC = BPE.default_special_tokens()
VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)
# Constants
MASK_EXTRA_SPACE = 100
REAL_TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size
TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + MASK_EXTRA_SPACE
EMBEDDED_SIZE = 256
FEED_FORWARD_MULTIPLIER = 4
ATTENTION_HEADS = 4
SENTENCE_LENGTH = 256
NUMBER_OF_BLOCKS = 2
MAX_EPOCHS = int(300)
PRETRAIN_EPOCHS = int(20)
WARMUP_EPOCHS = int(30)
MINI_BATCH_SIZE = 20
VALIDATION_STEPS = 10
CHECKPOINT_STEPS = VALIDATION_STEPS
PATIENCE = 4
CURRENT_EPOCH = -1 if not LAST_EPOCH_PATH.is_file() else int(LAST_EPOCH_PATH.read_text())
VERBOSE = False
LEARNING_RATE = 0.05
LABEL_SMOOTHING = 0.01
SOS_TOKEN = TOKENANO.encode("<SOS>")[0]
PAD_TOKEN = TOKENANO.encode("<PAD>")[0]
END_TOKEN = TOKENANO.encode("<END>")[0]
SUBJ_TOKEN = TOKENANO.encode("<SUBJ>")[0]
REL_TOKEN = TOKENANO.encode("<PRED>")[0]
OBJ_TOKEN = TOKENANO.encode("<OBJ>")[0]
MASK_TOKEN = TOKENANO.encode("<MASK>")[0]
SPECIAL_TOKENS: set[int] = set(TOKENANO.encode("".join(BPE.default_special_tokens())))
ALLOWED_TOKENS = set([SUBJ_TOKEN, REL_TOKEN, OBJ_TOKEN])
FORBIDDEN_TOKENS = SPECIAL_TOKENS - ALLOWED_TOKENS
# Spanned_Masker
MASKER = Transformer.SpannedMasker(REAL_TOKEN_SPACE_SIZE, FORBIDDEN_TOKENS, average_span=4)
TRAIN_BATCHER = Batch.Batcher(TRAIN_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER)
VALIDATION_BATCHER = Batch.Batcher(
VALIDATION_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER
)
TEST_BATCHER = Batch.Batcher(TEST_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER)
# Model
NANOSOCRATES = Transformer.TrainingModel(
TOKEN_SPACE_SIZE,
EMBEDDED_SIZE,
FEED_FORWARD_MULTIPLIER,
ATTENTION_HEADS,
NUMBER_OF_BLOCKS,
)
if CHECKPOINT_PATH.is_file():
nanosocrates_dict = torch.load(CHECKPOINT_PATH, weights_only=True)
NANOSOCRATES.load_state_dict(nanosocrates_dict)
_, ENCODER_ONLY, DECODER_ONLY = TUtils.decompose_nano_socrates(
NANOSOCRATES, TOKEN_SPACE_SIZE, EMBEDDED_SIZE
)
# Training constants
nano_cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN, label_smoothing=LABEL_SMOOTHING)
encoder_ce = torch.nn.CrossEntropyLoss( label_smoothing=LABEL_SMOOTHING)
decoder_ce = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN, label_smoothing=LABEL_SMOOTHING)
nano_optim = torch.optim.AdamW(NANOSOCRATES.parameters(), LEARNING_RATE)
encoder_only_optim = torch.optim.AdamW(ENCODER_ONLY.parameters(), LEARNING_RATE)
decoder_only_optim = torch.optim.AdamW(DECODER_ONLY.parameters(), LEARNING_RATE)
if NANO_OPTIM_PATH.is_file():
optim_dict = torch.load(NANO_OPTIM_PATH)
nano_optim.load_state_dict(optim_dict)
if ENC_OPTIM_PATH.is_file():
optim_dict = torch.load(ENC_OPTIM_PATH)
encoder_only_optim.load_state_dict(optim_dict)
if DEC_OPTIM_PATH.is_file():
optim_dict = torch.load(DEC_OPTIM_PATH)
decoder_only_optim.load_state_dict(optim_dict)
nano_scheduler = Transformer.WarmupLR(nano_optim, WARMUP_EPOCHS, EMBEDDED_SIZE, last_epoch=CURRENT_EPOCH)
encoder_only_scheduler = Transformer.WarmupLR(
encoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE, last_epoch=CURRENT_EPOCH
)
decoder_only_scheduler = Transformer.WarmupLR(
decoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE, last_epoch=CURRENT_EPOCH
)
current_epoch = CURRENT_EPOCH + 2
patience = 0
average_loss_validation = {
"txt": float("inf"),
"encoder_only": float("inf"),
"decoder_only": float("inf"),
}
while current_epoch < MAX_EPOCHS:
NANOSOCRATES.train()
ENCODER_ONLY.train()
DECODER_ONLY.train()
text_batch_losses = []
encoder_batch_losses = []
decoder_batch_losses = []
batch_counter = 0
if VERBOSE:
print(f"EPOCH {current_epoch} STARTING")
for batch in TRAIN_BATCHER.batch(MINI_BATCH_SIZE):
batch_counter += 1
src_x, tgt_y, pad_x, pad_y, tasktype = batch
enc_x = torch.tensor(src_x)
ACTUAL_BATCH_SIZE, _ = enc_x.shape
enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)
tgt = torch.tensor(tgt_y)
tgt_pad = torch.tensor(pad_y, dtype=torch.bool)
dec_x = Transformer.get_decoder_input(
ACTUAL_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH
)
dec_x[:, 1:] = tgt[:, :-1]
dec_x_pad = dec_x.eq(PAD_TOKEN)
if VERBOSE:
for s in TUtils.decode_batch(enc_x, TOKENANO, MASK_TOKEN):
print("Input")
print(s)
for s in TUtils.decode_batch(enc_x_pad, TOKENANO, MASK_TOKEN):
print("Encoder Padding mask")
print(s)
for s in TUtils.decode_batch(tgt, TOKENANO, MASK_TOKEN):
print("Desired Output")
print(s)
a_dx = dec_x[:,:]
a_dx[:, -1]= END_TOKEN
for s in TUtils.decode_batch(a_dx, TOKENANO, MASK_TOKEN):
print("Decoder Input")
print(s)
if VERBOSE:
print(f"\tBATCH {batch_counter} Starting")
# Task 1 and Task 2
if tasktype == Batch.TaskType.RDF2TXT or tasktype == Batch.TaskType.TEXT2RDF:
if VERBOSE:
print(f"\tExecuting TASK 1 or 2 - BATCH {batch_counter}")
nano_optim.zero_grad()
pred_logits: torch.Tensor = NANOSOCRATES((enc_x, enc_x_pad, dec_x, dec_x_pad))
pred_logits = pred_logits.permute(0, 2, 1)
loss: torch.Tensor = nano_cross_entropy(pred_logits, tgt)
loss.backward()
nano_optim.step()
text_batch_losses.append(loss)
continue
# Pretrain first
if current_epoch < PRETRAIN_EPOCHS:
continue
# Task 3
if tasktype == Batch.TaskType.MASKING:
if VERBOSE:
print(f"\tExecuting TASK 3 - BATCH {batch_counter}")
encoder_only_optim.zero_grad()
pred_logits = ENCODER_ONLY((enc_x, enc_x_pad))
pred_logits = pred_logits.permute(0, 2, 1)
# print(torch.max(tgt))
loss: torch.Tensor = encoder_ce(pred_logits, tgt)
loss.backward()
encoder_only_optim.step()
exp_tokens: list[int] = tgt_y[0]
exp_tokens = list(map(lambda x: MASK_TOKEN if x > TOKENANO.vocabulary_size else x, exp_tokens))
exp_string = TOKENANO.decode(exp_tokens)
enc_tokens: list[int] = src_x[0]
enc_tokens = list(map(lambda x: MASK_TOKEN if x > TOKENANO.vocabulary_size else x, enc_tokens))
enc_string = TOKENANO.decode(enc_tokens)
print(f"PROMPT:\n{enc_string}")
print(f"EXPECTED:\n{exp_string}")
encoder_batch_losses.append(loss.item())
continue
# Task 4
if tasktype == Batch.TaskType.COMPLETATION:
if VERBOSE:
print(f"\tExecuting TASK 4 - BATCH {batch_counter}")
decoder_only_optim.zero_grad()
pred_logits = DECODER_ONLY((dec_x, enc_x_pad, dec_x_pad))
pred_logits = pred_logits.permute(0, 2, 1)
loss: torch.Tensor = decoder_ce(pred_logits, tgt)
loss.backward()
decoder_only_optim.step()
decoder_batch_losses.append(
loss
)
continue
nano_scheduler.step()
encoder_only_scheduler.step()
decoder_only_scheduler.step()
current_epoch += 1
if current_epoch % VALIDATION_STEPS == 0:
NANOSOCRATES.eval()
ENCODER_ONLY.eval()
DECODER_ONLY.eval()
with torch.no_grad():
txt_avg_batch_losses = []
enc_avg_batch_losses = []
dec_avg_batch_losses = []
for batch in VALIDATION_BATCHER.batch(MINI_BATCH_SIZE):
src_x, tgt_y, pad_x, pad_y, tasktype = batch
enc_x = torch.tensor(src_x)
ACTUAL_BATCH_SIZE, _ = enc_x.shape
enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)
tgt = torch.tensor(tgt_y)
tgt_pad = torch.tensor(pad_y, dtype=torch.bool)
dec_x = Transformer.get_decoder_input(
ACTUAL_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH
)
dec_x[:, 1:] = tgt[:, :-1]
dec_x_pad = dec_x.eq(PAD_TOKEN)
# Task 1 and Task 2
if (
tasktype == Batch.TaskType.RDF2TXT
or tasktype == Batch.TaskType.TEXT2RDF
):
pred_logits = NANOSOCRATES((enc_x, enc_x_pad, dec_x, dec_x_pad))
pred_logits = pred_logits.permute(0, 2, 1)
loss: torch.Tensor = nano_cross_entropy(
pred_logits, tgt
)
txt_avg_batch_losses.append(loss)
continue
# Pretrain first
if current_epoch <= PRETRAIN_EPOCHS:
continue
# Task 3
if tasktype == Batch.TaskType.MASKING:
pred_logits = ENCODER_ONLY((enc_x, enc_x_pad))
pred_logits = pred_logits.permute(0, 2, 1)
loss: torch.Tensor = encoder_ce(pred_logits, tgt)
enc_avg_batch_losses.append(loss.item())
continue
# Task 4
if tasktype == Batch.TaskType.COMPLETATION:
pred_logits = DECODER_ONLY((dec_x, enc_x_pad, dec_x_pad))
pred_logits = pred_logits.permute(0, 2, 1)
loss: torch.Tensor = decoder_ce(pred_logits, tgt)
dec_avg_batch_losses.append(loss)
continue
txt_avg_loss = sum(txt_avg_batch_losses) / len(txt_avg_batch_losses)
enc_avg_loss = float("inf")
dec_avg_loss = float("inf")
if current_epoch > PRETRAIN_EPOCHS:
enc_avg_loss = sum(enc_avg_batch_losses) / len(enc_avg_batch_losses)
dec_avg_loss = sum(dec_avg_batch_losses) / len(dec_avg_batch_losses)
if current_epoch < PRETRAIN_EPOCHS:
if txt_avg_loss < average_loss_validation["txt"]:
average_loss_validation["txt"] = txt_avg_loss
else:
patience += 1
if VERBOSE:
print(f"losing a patience, current irritation: {patience}")
else:
counter = 0
if txt_avg_loss > average_loss_validation["txt"]:
if VERBOSE:
print("txt average is higher than lowest")
counter += 1
else:
average_loss_validation["txt"] = txt_avg_loss
if enc_avg_loss > average_loss_validation["encoder_only"]:
if VERBOSE:
print("masking average is higher than lowest")
counter += 1
else:
average_loss_validation["encoder_only"] = enc_avg_loss
if dec_avg_loss > average_loss_validation["decoder_only"]:
if VERBOSE:
print("decoding only average is higher than lowest")
counter += 1
else:
average_loss_validation["decoder_only"] = dec_avg_loss
if counter > 1:
patience += 1
if VERBOSE:
print(f"losing a patience, current irritation: {patience}")
if counter == 0:
patience = max(0, patience - 1)
if VERBOSE:
print(f"all good, gaining a patience, current irritation: {patience}")
txt_train_avg_loss = sum(text_batch_losses) / len(text_batch_losses)
enc_avg_train_loss = float("inf")
dec_avg_train_loss = float("inf")
if current_epoch > PRETRAIN_EPOCHS:
try:
enc_avg_train_loss = sum(encoder_batch_losses) / len(encoder_batch_losses)
dec_avg_train_loss = sum(decoder_batch_losses) / len(decoder_batch_losses)
except:
pass
# write on log
loss_saver.write([current_epoch, txt_train_avg_loss,enc_avg_train_loss,dec_avg_train_loss,txt_avg_loss,enc_avg_loss,dec_avg_loss])
SEPARATOR = "================================================================================================================"
DEBUG_TEXT = "".join(
[
f"{SEPARATOR}\n",
f"EPOCH {current_epoch}\n",
f"{SEPARATOR}\n",
f"Train Losses:\n",
f"\tAvg Losses:\n",
f"\t\tavg_txt: {txt_train_avg_loss} - avg_enc: {enc_avg_train_loss} - avg_dec: {dec_avg_train_loss}\n",
f"{SEPARATOR}\n",
f"Validation Losses:\n",
f"\ttxt_loss: {txt_avg_loss} - masking_loss: {enc_avg_loss} - prediction_loss: {dec_avg_loss}\n",
f"{SEPARATOR}\n",
]
)
print(DEBUG_TEXT)
# Warn about patience
if patience == PATIENCE:
print("Model is likely overfitting, so let's stop here")
# SAVE MODEL
if current_epoch % CHECKPOINT_STEPS == 0 or patience == PATIENCE:
print(f"Saving model at {CHECKPOINT_PATH.as_posix()}")
torch.save(NANOSOCRATES.state_dict(), CHECKPOINT_PATH)
torch.save(nano_optim.state_dict(), NANO_OPTIM_PATH)
torch.save(encoder_only_optim.state_dict(), ENC_OPTIM_PATH)
torch.save(decoder_only_optim.state_dict(), DEC_OPTIM_PATH)
FILE = open(LAST_EPOCH_PATH, "w", encoding="utf-8")
FILE.write(f"{current_epoch}")
FILE.close()
if patience == PATIENCE:
exit(0)

View File

@@ -11,7 +11,13 @@
"output_type": "stream",
"text": [
"c:\\Users\\Chris\\miniconda3\\envs\\deep_learning\\Lib\\site-packages\\torch\\utils\\_device.py:103: UserWarning: Aten Op fallback from XPU to CPU happends. This may have performance implications. If need debug the fallback ops please set environment variable `PYTORCH_DEBUG_XPU_FALLBACK=1` (Triggered internally at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\build\\xpu\\ATen\\RegisterXPU_0.cpp:54528.)\n",
" return func(*args, **kwargs)\n"
" return func(*args, **kwargs)\n",
"252.87s - name 'tensor' is not defined\n",
"Traceback (most recent call last):\n",
" File \"c:\\Users\\Chris\\miniconda3\\envs\\deep_learning\\Lib\\site-packages\\debugpy\\_vendored\\pydevd\\_pydevd_bundle\\pydevd_vars.py\", line 636, in change_attr_expression\n",
" value = eval(expression, frame.f_globals, frame.f_locals)\n",
" File \"<string>\", line 1, in <module>\n",
"NameError: name 'tensor' is not defined\n"
]
},
{
@@ -19,9 +25,15 @@
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n",
"\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n",
"\u001b[1;31mClick <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. \n",
"\u001b[1;31mCannot execute code, session has been disposed. Please try restarting the Kernel."
]
},
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mCannot execute code, session has been disposed. Please try restarting the Kernel. \n",
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
]
}
@@ -56,9 +68,9 @@
"TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + 1\n",
"EMBEDDED_SIZE = 256\n",
"FEED_FORWARD_MULTIPLIER = 4\n",
"ATTENTION_HEADS = 8\n",
"ATTENTION_HEADS = 4\n",
"SENTENCE_LENGTH = 256\n",
"NUMBER_OF_BLOCKS = 4\n",
"NUMBER_OF_BLOCKS = 2\n",
"MAX_EPOCHS = int(1e3)\n",
"\n",
"\n",
@@ -93,26 +105,7 @@
" output_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN\n",
" )\n",
" decoder_default_tokens, _ = Transformer.normalize_sequence(\n",
" decoder_default_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN, False\n",
" )\n",
"\n",
" TOY_BATCH_INPUT_LIST.append(input_tokens)\n",
" TOY_BATCH_PADDING_LIST.append(padding)\n",
" TOY_BATCH_TARGET_LIST.append(output_tokens)\n",
" TOY_BATCH_DECODER_DEFAULT.append(decoder_default_tokens)\n",
"\n",
" output_tokens = TOKENANO.encode(RDFs)\n",
" input_tokens = TOKENANO.encode(Abstract)[1:]\n",
" decoder_default_tokens = TOKENANO.encode(\"<SOS>\")\n",
"\n",
" input_tokens, padding = Transformer.normalize_sequence(\n",
" input_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN\n",
" )\n",
" output_tokens, _ = Transformer.normalize_sequence(\n",
" output_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN\n",
" )\n",
" decoder_default_tokens, _ = Transformer.normalize_sequence(\n",
" decoder_default_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN, False\n",
" decoder_default_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN\n",
" )\n",
"\n",
" TOY_BATCH_INPUT_LIST.append(input_tokens)\n",
@@ -131,7 +124,7 @@
")\n",
"cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)\n",
"optimizer = torch.optim.AdamW(NANOSOCRATES.parameters())\n",
"scheduler = Transformer.WarmupLR(optimizer, 4000, EMBEDDED_SIZE)\n",
"scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 4)\n",
"last_loss = 0\n",
"current_epoch = 0\n",
"\n",
@@ -139,44 +132,32 @@
"\n",
" optimizer.zero_grad()\n",
"\n",
" encoder_list = torch.tensor(TOY_BATCH_INPUT_LIST[:])\n",
" decoder_list = torch.tensor(TOY_BATCH_DECODER_DEFAULT[:])\n",
" src_padding = torch.tensor(TOY_BATCH_PADDING_LIST[:], dtype=torch.bool)\n",
" encoder_list = torch.tensor([TOY_BATCH_INPUT_LIST[0]])\n",
" decoder_list = torch.tensor([TOY_BATCH_DECODER_DEFAULT[0]])\n",
" padding_list = torch.tensor([TOY_BATCH_PADDING_LIST[0]], dtype=torch.bool)\n",
"\n",
" # Transform target into logits\n",
" target_logits = torch.tensor(TOY_BATCH_TARGET_LIST[:])\n",
" target_logits = torch.tensor([TOY_BATCH_TARGET_LIST[0]])\n",
"\n",
" last_loss = 0\n",
" last_prediction: torch.Tensor\n",
"\n",
" for i in range(0, SENTENCE_LENGTH):\n",
"\n",
" optimizer.zero_grad()\n",
" tgt_padding = decoder_list.eq(PAD_TOKEN)\n",
"\n",
" logits: torch.Tensor = NANOSOCRATES((encoder_list, src_padding, decoder_list, tgt_padding))\n",
" prob = torch.softmax(logits, 2)\n",
" logits: torch.Tensor = NANOSOCRATES((encoder_list, padding_list, decoder_list))\n",
"\n",
" most_probable_tokens = torch.argmax(prob, 2)\n",
" last_prediction = most_probable_tokens\n",
" most_probable_tokens = torch.argmax(logits, 2)\n",
"\n",
" logits = logits[:,:i,:]\n",
" logits = logits.permute(0, 2, 1)\n",
"\n",
" loss : torch.Tensor = cross_entropy(logits, target_logits[:, 0:i])\n",
" # loss : torch.Tensor = cross_entropy(logits, target_logits)\n",
" logits = logits[:,i,:]\n",
"\n",
" loss = cross_entropy(logits, target_logits[:,i])\n",
" last_loss = loss\n",
" loss.backward()\n",
" optimizer.step()\n",
" scheduler.step()\n",
"\n",
" if i < SENTENCE_LENGTH - 1:\n",
" decoder_list[:,i+1] = target_logits[:,i]\n",
"\n",
"\n",
"\n",
"\n",
" decoder_list[:,i+1] = most_probable_tokens[:,i]\n",
"\n",
"\n",
" current_epoch += 1\n",
@@ -184,14 +165,6 @@
" if current_epoch % 1 == 0:\n",
" print(f\"EPOCH {current_epoch}\\n\\tLoss: {last_loss}\")\n",
"\n",
" for encoded_sentence, expected_sentence in zip(\n",
" Transformer.tensor2token(last_prediction[:,:], END_TOKEN), # type: ignore\n",
" Transformer.tensor2token(target_logits[:,:], END_TOKEN)\n",
" ):\n",
" decoded_sentence = TOKENANO.decode(encoded_sentence)\n",
" decoded_target = TOKENANO.decode(expected_sentence)\n",
" print(f\"\\tACTUAL:\\n\\t\\t{decoded_sentence}\\n\\tEXPECTED:\\n\\t\\t{decoded_target}\\n\")\n",
"\n",
"\n",
"\n",
"\n",

View File

@@ -1,509 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "adbef43f",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Chris\\miniconda3\\envs\\deep_learning\\Lib\\site-packages\\torch\\utils\\_device.py:103: UserWarning: Aten Op fallback from XPU to CPU happends. This may have performance implications. If need debug the fallback ops please set environment variable `PYTORCH_DEBUG_XPU_FALLBACK=1` (Triggered internally at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\build\\xpu\\ATen\\RegisterXPU_0.cpp:54528.)\n",
" return func(*args, **kwargs)\n",
"c:\\Users\\Chris\\miniconda3\\envs\\deep_learning\\Lib\\site-packages\\torch\\optim\\lr_scheduler.py:192: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate\n",
" warnings.warn(\n"
]
},
{
"ename": "IndexError",
"evalue": "list index out of range",
"output_type": "error",
"traceback": [
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
"\u001b[31mIndexError\u001b[39m Traceback (most recent call last)",
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[1]\u001b[39m\u001b[32m, line 383\u001b[39m\n\u001b[32m 381\u001b[39m txt_min_train_losses = text_batch_losses[:][\u001b[32m0\u001b[39m]\n\u001b[32m 382\u001b[39m txt_avg_train_losses = text_batch_losses[:][\u001b[32m1\u001b[39m]\n\u001b[32m--> \u001b[39m\u001b[32m383\u001b[39m txt_max_train_losses = \u001b[43mtext_batch_losses\u001b[49m\u001b[43m[\u001b[49m\u001b[43m:\u001b[49m\u001b[43m]\u001b[49m\u001b[43m[\u001b[49m\u001b[32;43m2\u001b[39;49m\u001b[43m]\u001b[49m\n\u001b[32m 385\u001b[39m txt_min_loss = \u001b[38;5;28mmin\u001b[39m(txt_min_train_losses)\n\u001b[32m 386\u001b[39m txt_avg_min_loss = \u001b[38;5;28msum\u001b[39m(txt_min_train_losses) / \u001b[38;5;28mlen\u001b[39m(txt_min_train_losses)\n",
"\u001b[31mIndexError\u001b[39m: list index out of range"
]
}
],
"source": [
"import random\n",
"import sys\n",
"import torch\n",
"import pandas as pd\n",
"from pathlib import Path\n",
"import Project_Model.Libs.Embedder as Embedder\n",
"import Project_Model.Libs.BPE as BPE\n",
"import Project_Model.Libs.Transformer as Transformer\n",
"import Project_Model.Libs.TransformerUtils as TUtils\n",
"import Project_Model.Libs.TorchShims as torch_shims\n",
"import Project_Model.Libs.Batch as Batch\n",
"\n",
"# set a fixed seed\n",
"torch.manual_seed(0)\n",
"random.seed(0)\n",
"\n",
"\n",
"# set a default device\n",
"DEVICE = torch_shims.get_default_device()\n",
"torch.set_default_device(DEVICE)\n",
"\n",
"\n",
"# Get paths\n",
"VOCABULARY_PATH = Path(\"Assets/Model/small/bpe-small-16.json\")\n",
"TRAIN_DATASET_PATH = Path(\"Assets/Dataset/1-hop/toy/rdf_text.csv\")\n",
"VALIDATION_DATASET_PATH = Path(\"Assets/Dataset/1-hop/toy/rdf_text.csv\")\n",
"TEST_DATASET_PATH = Path(\"Assets/Dataset/1-hop/toy/rdf_text.csv\")\n",
"CHECKPOINT_PATH = Path(\"Assets/Dataset/Tmp/NanoSocrates.zip\")\n",
"\n",
"\n",
"# BPE Init\n",
"SPECIAL_VOC = BPE.default_special_tokens()\n",
"VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)\n",
"TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)\n",
"\n",
"\n",
"# Constants\n",
"MASK_EXTRA_SPACE = 25\n",
"TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + MASK_EXTRA_SPACE\n",
"EMBEDDED_SIZE = 256\n",
"FEED_FORWARD_MULTIPLIER = 4\n",
"ATTENTION_HEADS = 8\n",
"SENTENCE_LENGTH = 256\n",
"NUMBER_OF_BLOCKS = 4\n",
"MAX_EPOCHS = int(1e3)\n",
"PRETRAIN_EPOCHS = int(2)\n",
"WARMUP_EPOCHS = int(4e3)\n",
"MINI_BATCH_SIZE = 10\n",
"VALIDATION_STEPS = 1\n",
"CHECKPOINT_STEPS = VALIDATION_STEPS * 4\n",
"PATIENCE = 4\n",
"CURRENT_EPOCH = 0\n",
"\n",
"SOS_TOKEN = TOKENANO.encode(\"<SOS>\")[0]\n",
"\n",
"PAD_TOKEN = TOKENANO.encode(\"<PAD>\")[0]\n",
"END_TOKEN = TOKENANO.encode(\"<END>\")[0]\n",
"SUBJ_TOKEN = TOKENANO.encode(\"<SUBJ>\")[0]\n",
"REL_TOKEN = TOKENANO.encode(\"<PRED>\")[0]\n",
"OBJ_TOKEN = TOKENANO.encode(\"<OBJ>\")[0]\n",
"\n",
"SPECIAL_TOKENS: set[int] = set(TOKENANO.encode(\"\".join(BPE.default_special_tokens())))\n",
"ALLOWED_TOKENS = set([SUBJ_TOKEN, REL_TOKEN, OBJ_TOKEN])\n",
"FORBIDDEN_TOKENS = SPECIAL_TOKENS - ALLOWED_TOKENS\n",
"\n",
"\n",
"# Spanned_Masker\n",
"MASKER = Transformer.SpannedMasker(\n",
" TOKEN_SPACE_SIZE,\n",
" FORBIDDEN_TOKENS\n",
")\n",
"\n",
"TRAIN_BATCHER = Batch.Batcher(\n",
" TRAIN_DATASET_PATH,\n",
" SENTENCE_LENGTH,\n",
" TOKENANO,\n",
" MASKER\n",
")\n",
"VALIDATION_BATCHER = Batch.Batcher(\n",
" VALIDATION_DATASET_PATH,\n",
" SENTENCE_LENGTH,\n",
" TOKENANO,\n",
" MASKER\n",
")\n",
"TEST_BATCHER = Batch.Batcher(\n",
" TEST_DATASET_PATH,\n",
" SENTENCE_LENGTH,\n",
" TOKENANO,\n",
" MASKER\n",
")\n",
"\n",
"\n",
"# Model\n",
"NANOSOCRATES = Transformer.TrainingModel(\n",
" TOKEN_SPACE_SIZE,\n",
" EMBEDDED_SIZE,\n",
" FEED_FORWARD_MULTIPLIER,\n",
" ATTENTION_HEADS,\n",
" NUMBER_OF_BLOCKS\n",
")\n",
"_, ENCODER_ONLY, DECODER_ONLY = TUtils.decompose_nano_socrates(\n",
" NANOSOCRATES,\n",
" TOKEN_SPACE_SIZE,\n",
" EMBEDDED_SIZE\n",
")\n",
"\n",
"\n",
"# Training constants\n",
"cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)\n",
"nano_optim = torch.optim.AdamW(NANOSOCRATES.parameters())\n",
"encoder_only_optim = torch.optim.AdamW(ENCODER_ONLY.parameters())\n",
"decoder_only_optim = torch.optim.AdamW(DECODER_ONLY.parameters())\n",
"\n",
"nano_scheduler = Transformer.WarmupLR(nano_optim, WARMUP_EPOCHS, EMBEDDED_SIZE)\n",
"encoder_only_scheduler = Transformer.WarmupLR(encoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE)\n",
"decoder_only_scheduler = Transformer.WarmupLR(decoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE)\n",
"\n",
"current_epoch = CURRENT_EPOCH\n",
"patience = 0\n",
"\n",
"\n",
"average_loss_validation = {\n",
" \"txt\": float(\"inf\"),\n",
" \"encoder_only\": float(\"inf\"),\n",
" \"decoder_only\": float(\"inf\")\n",
"}\n",
"\n",
"while current_epoch < MAX_EPOCHS:\n",
"\n",
" text_batch_losses = []\n",
" encoder_batch_losses = []\n",
" decoder_batch_losses = []\n",
"\n",
" for batch in TRAIN_BATCHER.batch(MINI_BATCH_SIZE):\n",
"\n",
" src_x, tgt_y, pad_x, pad_y, tasktype = batch\n",
"\n",
" enc_x = torch.tensor(src_x)\n",
" enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)\n",
" dec_x = Transformer.get_decoder_input(MINI_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH)\n",
" dec_x_pad = dec_x.eq(PAD_TOKEN)\n",
" tgt = torch.tensor(tgt_y)\n",
" tgt_pad = torch.tensor(pad_y, dtype=torch.bool)\n",
"\n",
" # Task 1 and Task 2\n",
" if tasktype == Batch.TaskType.RDF2TXT or tasktype == Batch.TaskType.TEXT2RDF:\n",
"\n",
" BATCH_LOSS = []\n",
"\n",
" for token_idx in range(0, SENTENCE_LENGTH):\n",
"\n",
" nano_optim.zero_grad()\n",
"\n",
"\n",
"\n",
" pred_logits = NANOSOCRATES((\n",
" enc_x, enc_x_pad, dec_x, dec_x_pad\n",
" ))\n",
"\n",
" pred_logits = pred_logits[:, token_idx, :]\n",
"\n",
" loss: torch.Tensor= cross_entropy(pred_logits, tgt[:, token_idx])\n",
"\n",
" loss.backward()\n",
" nano_optim.step()\n",
"\n",
"\n",
" BATCH_LOSS.append(\n",
" loss.item()\n",
" )\n",
"\n",
" if token_idx < SENTENCE_LENGTH - 1:\n",
" dec_x[:,token_idx + 1] = tgt[:, token_idx]\n",
"\n",
" MIN_BATCH_LOSS = min(BATCH_LOSS)\n",
" MAX_BATCH_LOSS = max(BATCH_LOSS)\n",
" AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE\n",
"\n",
" text_batch_losses.append([MIN_BATCH_LOSS, AVG_BATCH_LOSS, MAX_BATCH_LOSS])\n",
" continue\n",
"\n",
"\n",
" # Pretrain first\n",
" if current_epoch < PRETRAIN_EPOCHS:\n",
" continue\n",
"\n",
"\n",
" # Task 3\n",
" if tasktype == Batch.TaskType.MASKING:\n",
"\n",
" encoder_only_optim.zero_grad()\n",
"\n",
" pred_logits = ENCODER_ONLY((\n",
" enc_x, enc_x_pad\n",
" ))\n",
"\n",
" loss: torch.Tensor= cross_entropy(pred_logits, tgt)\n",
"\n",
" loss.backward()\n",
" encoder_only_optim.step()\n",
"\n",
" encoder_batch_losses.append(\n",
" loss.item()\n",
" )\n",
"\n",
" continue\n",
"\n",
"\n",
" # Task 4\n",
" if tasktype == Batch.TaskType.COMPLETATION:\n",
"\n",
" BATCH_LOSS = []\n",
"\n",
" for token_idx in range(0, SENTENCE_LENGTH):\n",
"\n",
" decoder_only_optim.zero_grad()\n",
"\n",
" pred_logits = DECODER_ONLY((\n",
" enc_x, enc_x_pad\n",
" ))\n",
"\n",
" pred_logits = pred_logits[:, token_idx, :]\n",
"\n",
" loss: torch.Tensor= cross_entropy(pred_logits, tgt[:, token_idx])\n",
"\n",
" loss.backward()\n",
" decoder_only_optim.step()\n",
"\n",
" BATCH_LOSS.append(\n",
" loss.item()\n",
" )\n",
"\n",
" if token_idx < SENTENCE_LENGTH - 1:\n",
" dec_x[:,token_idx + 1] = tgt[:, token_idx]\n",
"\n",
"\n",
" MIN_BATCH_LOSS = min(BATCH_LOSS)\n",
" MAX_BATCH_LOSS = max(BATCH_LOSS)\n",
" AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE\n",
"\n",
" decoder_batch_losses.append([MIN_BATCH_LOSS, AVG_BATCH_LOSS, MAX_BATCH_LOSS])\n",
"\n",
" continue\n",
"\n",
"\n",
" nano_scheduler.step()\n",
" encoder_only_scheduler.step()\n",
" decoder_only_scheduler.step()\n",
"\n",
" current_epoch += 1\n",
"\n",
" if current_epoch % VALIDATION_STEPS == 0:\n",
"\n",
" txt_avg_batch_losses = []\n",
" enc_avg_batch_losses = []\n",
" dec_avg_batch_losses = []\n",
"\n",
" for batch in VALIDATION_BATCHER.batch(MINI_BATCH_SIZE):\n",
"\n",
" src_x, tgt_y, pad_x, pad_y, tasktype = batch\n",
"\n",
" enc_x = torch.tensor(src_x)\n",
" enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)\n",
" dec_x = Transformer.get_decoder_input(MINI_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH)\n",
" dec_x_pad = dec_x.eq(PAD_TOKEN)\n",
" tgt = torch.tensor(tgt_y)\n",
" tgt_pad = torch.tensor(pad_y, dtype=torch.bool)\n",
"\n",
" # Task 1 and Task 2\n",
" if tasktype == Batch.TaskType.RDF2TXT or tasktype == Batch.TaskType.TEXT2RDF:\n",
"\n",
" BATCH_LOSS = []\n",
"\n",
" for token_idx in range(0, SENTENCE_LENGTH):\n",
"\n",
"\n",
"\n",
" pred_logits = NANOSOCRATES((\n",
" enc_x, enc_x_pad, dec_x, dec_x_pad\n",
" ))\n",
"\n",
" pred_logits = pred_logits[:, token_idx, :]\n",
"\n",
" loss: torch.Tensor= cross_entropy(pred_logits, tgt[:, token_idx])\n",
"\n",
"\n",
" BATCH_LOSS.append(\n",
" loss.item()\n",
" )\n",
"\n",
" if token_idx < SENTENCE_LENGTH - 1:\n",
" dec_x[:,token_idx + 1] = tgt[:, token_idx]\n",
"\n",
"\n",
" AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE\n",
" txt_avg_batch_losses.append(AVG_BATCH_LOSS)\n",
"\n",
" continue\n",
"\n",
"\n",
" # Pretrain first\n",
" if current_epoch < PRETRAIN_EPOCHS:\n",
" continue\n",
"\n",
"\n",
" # Task 3\n",
" if tasktype == Batch.TaskType.MASKING:\n",
"\n",
" pred_logits = ENCODER_ONLY((\n",
" enc_x, enc_x_pad\n",
" ))\n",
"\n",
" loss: torch.Tensor= cross_entropy(pred_logits, tgt)\n",
"\n",
" enc_avg_batch_losses.append(\n",
" loss.item()\n",
" )\n",
"\n",
" continue\n",
"\n",
"\n",
" # Task 4\n",
" if tasktype == Batch.TaskType.COMPLETATION:\n",
"\n",
" BATCH_LOSS = []\n",
"\n",
" for token_idx in range(0, SENTENCE_LENGTH):\n",
"\n",
" pred_logits = DECODER_ONLY((\n",
" enc_x, enc_x_pad\n",
" ))\n",
"\n",
" pred_logits = pred_logits[:, token_idx, :]\n",
"\n",
" loss: torch.Tensor= cross_entropy(pred_logits, tgt[:, token_idx])\n",
"\n",
" BATCH_LOSS.append(\n",
" loss.item()\n",
" )\n",
"\n",
" if token_idx < SENTENCE_LENGTH - 1:\n",
" dec_x[:,token_idx + 1] = tgt[:, token_idx]\n",
"\n",
"\n",
" AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE\n",
"\n",
" dec_avg_batch_losses.append(AVG_BATCH_LOSS)\n",
"\n",
" continue\n",
"\n",
" txt_avg_loss = sum(txt_avg_batch_losses) / len(txt_avg_batch_losses)\n",
" enc_avg_loss = float(\"inf\")\n",
" dec_avg_loss = float(\"inf\")\n",
"\n",
" if current_epoch >= PRETRAIN_EPOCHS:\n",
" enc_avg_loss = sum(enc_avg_batch_losses) / len(enc_avg_batch_losses)\n",
" dec_avg_loss = sum(dec_avg_batch_losses) / len(dec_avg_batch_losses)\n",
"\n",
" if current_epoch < PRETRAIN_EPOCHS:\n",
"\n",
" if txt_avg_loss < average_loss_validation[\"txt\"]:\n",
" average_loss_validation[\"txt\"] = txt_avg_loss\n",
" else:\n",
" patience += 1\n",
" else:\n",
"\n",
" counter = 0\n",
"\n",
" if txt_avg_loss > average_loss_validation[\"txt\"]:\n",
" counter += 1\n",
"\n",
" if txt_avg_loss > average_loss_validation[\"encoder_only\"]:\n",
" counter += 1\n",
"\n",
" if txt_avg_loss > average_loss_validation[\"decoder_only\"]:\n",
" counter += 1\n",
"\n",
" if counter > 1:\n",
" patience += 1\n",
"\n",
" txt_min_train_losses = text_batch_losses[:][0]\n",
" txt_avg_train_losses = text_batch_losses[:][1]\n",
" txt_max_train_losses = text_batch_losses[:][2]\n",
"\n",
" txt_min_loss = min(txt_min_train_losses)\n",
" txt_avg_min_loss = sum(txt_min_train_losses) / len(txt_min_train_losses)\n",
" txt_max_loss = max(txt_max_train_losses)\n",
" txt_avg_max_loss = sum(txt_max_train_losses) / len(txt_max_train_losses)\n",
" txt_avg_loss = sum(txt_avg_train_losses) / len(txt_avg_train_losses)\n",
"\n",
" enc_avg_train_loss = float(\"inf\")\n",
"\n",
" dec_min_loss = float(\"inf\")\n",
" dec_avg_min_loss = float(\"inf\")\n",
" dec_max_loss = float(\"inf\")\n",
" dec_avg_max_loss = float(\"inf\")\n",
" dec_avg_loss = float(\"inf\")\n",
"\n",
" if current_epoch >= PRETRAIN_EPOCHS:\n",
" enc_avg_train_loss = sum(encoder_batch_losses) / len(encoder_batch_losses)\n",
"\n",
" dec_min_train_losses = decoder_batch_losses[:][0]\n",
" dec_avg_train_losses = decoder_batch_losses[:][1]\n",
" dec_max_train_losses = decoder_batch_losses[:][2]\n",
"\n",
" dec_min_loss = min(dec_min_train_losses)\n",
" dec_avg_min_loss = sum(dec_min_train_losses) / len(dec_min_train_losses)\n",
" dec_max_loss = max(dec_max_train_losses)\n",
" dec_avg_max_loss = sum(dec_max_train_losses) / len(dec_max_train_losses)\n",
" dec_avg_loss = sum(dec_avg_train_losses) / len(dec_avg_train_losses)\n",
"\n",
"\n",
" SEPARATOR = \"===========================================================================================\"\n",
" DEBUG_TEXT = \"\".join([\n",
" f\"{SEPARATOR}\\n\",\n",
" f\"EPOCH {current_epoch}\"\n",
" f\"{SEPARATOR}\\n\",\n",
" f\"Train Losses:\\n\"\n",
" f\"\\tMin Losses:\\n\"\n",
" f\"\\t\\tmin_txt: {txt_min_loss} - avg_txt: {txt_avg_min_loss}\\n\"\n",
" f\"\\t\\tmin_dec: {dec_min_loss} - avg_dec: {dec_avg_min_loss}\\n\"\n",
" f\"\\tMax Losses:\\n\"\n",
" f\"\\t\\tmax_txt: {txt_max_loss} - avg_txt: {txt_avg_max_loss}\\n\"\n",
" f\"\\t\\tmax_dec: {dec_min_loss} - avg_dec: {dec_avg_max_loss}\\n\"\n",
" f\"\\tAvg Losses:\\n\"\n",
" f\"\\t\\tavg_txt: {txt_avg_loss} - avg_enc: {enc_avg_loss} - avg_dec: {dec_avg_loss}\\n\"\n",
" f\"{SEPARATOR}\\n\",\n",
" f\"Validation Losses:\\n\"\n",
" f\"\\ttxt_loss: {txt_avg_loss} - masking_loss: {enc_avg_loss} - prediction: {dec_avg_loss}\"\n",
" f\"{SEPARATOR}\\n\",\n",
" ])\n",
"\n",
"\n",
"\n",
"\n",
"\n",
" # Warn about patience\n",
" if patience == PATIENCE:\n",
" print(\n",
" \"Model is likely overfitting, so let's stop here\"\n",
" )\n",
"\n",
" # SAVE MODEL\n",
" if current_epoch % CHECKPOINT_STEPS == 0 or patience == PATIENCE:\n",
" print(f\"Saving model at {CHECKPOINT_PATH.as_posix()}\")\n",
" torch.save(NANOSOCRATES.state_dict(), CHECKPOINT_PATH)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "deep_learning",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,433 +0,0 @@
import random
import sys
import torch
import pandas as pd
from pathlib import Path
import Project_Model.Libs.Embedder as Embedder
import Project_Model.Libs.BPE as BPE
import Project_Model.Libs.Transformer as Transformer
import Project_Model.Libs.TransformerUtils as TUtils
import Project_Model.Libs.TorchShims as torch_shims
import Project_Model.Libs.Batch as Batch
# set a fixed seed
torch.manual_seed(0)
random.seed(0)
# set a default device
DEVICE = torch_shims.get_default_device()
torch.set_default_device(DEVICE)
# Get paths
VOCABULARY_PATH = Path("Assets/Model/small/bpe-small-16.json")
TRAIN_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/train.csv")
VALIDATION_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/evaluation.csv")
TEST_DATASET_PATH = Path("Assets/Dataset/1-hop/small/holdout/test.csv")
CHECKPOINT_PATH = Path("Assets/Dataset/Tmp/NanoSocrates.zip")
# BPE Init
SPECIAL_VOC = BPE.default_special_tokens()
VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)
# Constants
MASK_EXTRA_SPACE = 100
REAL_TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size
TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + MASK_EXTRA_SPACE
EMBEDDED_SIZE = 256
FEED_FORWARD_MULTIPLIER = 4
ATTENTION_HEADS = 8
SENTENCE_LENGTH = 256
NUMBER_OF_BLOCKS = 4
MAX_EPOCHS = int(1e3)
PRETRAIN_EPOCHS = int(10)
WARMUP_EPOCHS = int(4e3)
MINI_BATCH_SIZE = 100
VALIDATION_STEPS = 5
CHECKPOINT_STEPS = VALIDATION_STEPS * 4
PATIENCE = 4
CURRENT_EPOCH = 0
SOS_TOKEN = TOKENANO.encode("<SOS>")[0]
PAD_TOKEN = TOKENANO.encode("<PAD>")[0]
END_TOKEN = TOKENANO.encode("<END>")[0]
SUBJ_TOKEN = TOKENANO.encode("<SUBJ>")[0]
REL_TOKEN = TOKENANO.encode("<PRED>")[0]
OBJ_TOKEN = TOKENANO.encode("<OBJ>")[0]
SPECIAL_TOKENS: set[int] = set(TOKENANO.encode("".join(BPE.default_special_tokens())))
ALLOWED_TOKENS = set([SUBJ_TOKEN, REL_TOKEN, OBJ_TOKEN])
FORBIDDEN_TOKENS = SPECIAL_TOKENS - ALLOWED_TOKENS
# Spanned_Masker
MASKER = Transformer.SpannedMasker(REAL_TOKEN_SPACE_SIZE, FORBIDDEN_TOKENS)
TRAIN_BATCHER = Batch.Batcher(TRAIN_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER)
VALIDATION_BATCHER = Batch.Batcher(
VALIDATION_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER
)
TEST_BATCHER = Batch.Batcher(TEST_DATASET_PATH, SENTENCE_LENGTH, TOKENANO, MASKER)
# Model
NANOSOCRATES = Transformer.TrainingModel(
TOKEN_SPACE_SIZE,
EMBEDDED_SIZE,
FEED_FORWARD_MULTIPLIER,
ATTENTION_HEADS,
NUMBER_OF_BLOCKS,
)
_, ENCODER_ONLY, DECODER_ONLY = TUtils.decompose_nano_socrates(
NANOSOCRATES, TOKEN_SPACE_SIZE, EMBEDDED_SIZE
)
# Training constants
nano_cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)
encoder_ce = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)
decoder_ce = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)
nano_optim = torch.optim.AdamW(NANOSOCRATES.parameters())
encoder_only_optim = torch.optim.AdamW(ENCODER_ONLY.parameters())
decoder_only_optim = torch.optim.AdamW(DECODER_ONLY.parameters())
nano_scheduler = Transformer.WarmupLR(nano_optim, WARMUP_EPOCHS, EMBEDDED_SIZE)
encoder_only_scheduler = Transformer.WarmupLR(
encoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE
)
decoder_only_scheduler = Transformer.WarmupLR(
decoder_only_optim, WARMUP_EPOCHS, EMBEDDED_SIZE
)
current_epoch = CURRENT_EPOCH
patience = 0
average_loss_validation = {
"txt": float("inf"),
"encoder_only": float("inf"),
"decoder_only": float("inf"),
}
while current_epoch < MAX_EPOCHS:
NANOSOCRATES.train()
ENCODER_ONLY.train()
DECODER_ONLY.train()
text_batch_losses = []
encoder_batch_losses = []
decoder_batch_losses = []
batch_counter = 0
print(f"EPOCH {current_epoch} STARTING")
for batch in TRAIN_BATCHER.batch(MINI_BATCH_SIZE):
batch_counter += 1
src_x, tgt_y, pad_x, pad_y, tasktype = batch
enc_x = torch.tensor(src_x)
ACTUAL_BATCH_SIZE, _ = enc_x.shape
enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)
dec_x = Transformer.get_decoder_input(
ACTUAL_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH
)
dec_x_pad = dec_x.eq(PAD_TOKEN)
tgt = torch.tensor(tgt_y)
tgt_pad = torch.tensor(pad_y, dtype=torch.bool)
print(f"\tBATCH {batch_counter} Starting")
# Task 1 and Task 2
if tasktype == Batch.TaskType.RDF2TXT or tasktype == Batch.TaskType.TEXT2RDF:
print(f"\tExecuting TASK 1 or 2 - BATCH {batch_counter}")
BATCH_LOSS = []
for token_idx in range(0, SENTENCE_LENGTH):
nano_optim.zero_grad()
pred_logits = NANOSOCRATES((enc_x, enc_x_pad, dec_x, dec_x_pad))
pred_logits = pred_logits[:, token_idx, :]
loss: torch.Tensor = nano_cross_entropy(pred_logits, tgt[:, token_idx])
loss.backward()
nano_optim.step()
BATCH_LOSS.append(loss.item())
if token_idx < SENTENCE_LENGTH - 1:
dec_x[:, token_idx + 1] = tgt[:, token_idx]
MIN_BATCH_LOSS = min(BATCH_LOSS)
MAX_BATCH_LOSS = max(BATCH_LOSS)
AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE
text_batch_losses.append([MIN_BATCH_LOSS, AVG_BATCH_LOSS, MAX_BATCH_LOSS])
continue
# Pretrain first
if current_epoch < PRETRAIN_EPOCHS:
continue
# Task 3
if tasktype == Batch.TaskType.MASKING:
print(f"\tExecuting TASK 3 - BATCH {batch_counter}")
encoder_only_optim.zero_grad()
pred_logits = ENCODER_ONLY((enc_x, enc_x_pad))
pred_logits = pred_logits.permute(0, 2, 1)
print(torch.max(tgt))
loss: torch.Tensor = encoder_ce(pred_logits, tgt)
loss.backward()
encoder_only_optim.step()
encoder_batch_losses.append(loss.item())
continue
# Task 4
if tasktype == Batch.TaskType.COMPLETATION:
print(f"\tExecuting TASK 4 - BATCH {batch_counter}")
BATCH_LOSS = []
for token_idx in range(0, SENTENCE_LENGTH):
decoder_only_optim.zero_grad()
pred_logits = DECODER_ONLY((enc_x, enc_x_pad))
pred_logits = pred_logits[:, token_idx, :]
loss: torch.Tensor = decoder_ce(pred_logits, tgt[:, token_idx])
loss.backward()
decoder_only_optim.step()
BATCH_LOSS.append(loss.item())
if token_idx < SENTENCE_LENGTH - 1:
dec_x[:, token_idx + 1] = tgt[:, token_idx]
MIN_BATCH_LOSS = min(BATCH_LOSS)
MAX_BATCH_LOSS = max(BATCH_LOSS)
AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE
decoder_batch_losses.append(
[MIN_BATCH_LOSS, AVG_BATCH_LOSS, MAX_BATCH_LOSS]
)
continue
nano_scheduler.step()
encoder_only_scheduler.step()
decoder_only_scheduler.step()
current_epoch += 1
if current_epoch % VALIDATION_STEPS == 0:
NANOSOCRATES.eval()
ENCODER_ONLY.eval()
DECODER_ONLY.eval()
txt_avg_batch_losses = []
enc_avg_batch_losses = []
dec_avg_batch_losses = []
for batch in VALIDATION_BATCHER.batch(MINI_BATCH_SIZE):
src_x, tgt_y, pad_x, pad_y, tasktype = batch
enc_x = torch.tensor(src_x)
ACTUAL_BATCH_SIZE, _, _ = enc_x.shape
enc_x_pad = torch.tensor(pad_x, dtype=torch.bool)
dec_x = Transformer.get_decoder_input(
ACTUAL_BATCH_SIZE, SOS_TOKEN, PAD_TOKEN, SENTENCE_LENGTH
)
dec_x_pad = dec_x.eq(PAD_TOKEN)
tgt = torch.tensor(tgt_y)
tgt_pad = torch.tensor(pad_y, dtype=torch.bool)
# Task 1 and Task 2
if (
tasktype == Batch.TaskType.RDF2TXT
or tasktype == Batch.TaskType.TEXT2RDF
):
BATCH_LOSS = []
for token_idx in range(0, SENTENCE_LENGTH):
pred_logits = NANOSOCRATES((enc_x, enc_x_pad, dec_x, dec_x_pad))
pred_logits = pred_logits[:, token_idx, :]
loss: torch.Tensor = nano_cross_entropy(pred_logits, tgt[:, token_idx])
BATCH_LOSS.append(loss.item())
if token_idx < SENTENCE_LENGTH - 1:
dec_x[:, token_idx + 1] = tgt[:, token_idx]
AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE
txt_avg_batch_losses.append(AVG_BATCH_LOSS)
continue
# Pretrain first
if current_epoch < PRETRAIN_EPOCHS:
continue
# Task 3
if tasktype == Batch.TaskType.MASKING:
pred_logits = ENCODER_ONLY((enc_x, enc_x_pad))
pred_logits = pred_logits.permute(0, 2, 1)
loss: torch.Tensor = encoder_ce(pred_logits, tgt)
enc_avg_batch_losses.append(loss.item())
continue
# Task 4
if tasktype == Batch.TaskType.COMPLETATION:
BATCH_LOSS = []
for token_idx in range(0, SENTENCE_LENGTH):
pred_logits = DECODER_ONLY((enc_x, enc_x_pad))
pred_logits = pred_logits[:, token_idx, :]
loss: torch.Tensor = decoder_ce(pred_logits, tgt[:, token_idx])
BATCH_LOSS.append(loss.item())
if token_idx < SENTENCE_LENGTH - 1:
dec_x[:, token_idx + 1] = tgt[:, token_idx]
AVG_BATCH_LOSS = sum(BATCH_LOSS) / MINI_BATCH_SIZE
dec_avg_batch_losses.append(AVG_BATCH_LOSS)
continue
txt_avg_loss = sum(txt_avg_batch_losses) / len(txt_avg_batch_losses)
enc_avg_loss = float("inf")
dec_avg_loss = float("inf")
if current_epoch >= PRETRAIN_EPOCHS:
enc_avg_loss = sum(enc_avg_batch_losses) / len(enc_avg_batch_losses)
dec_avg_loss = sum(dec_avg_batch_losses) / len(dec_avg_batch_losses)
if current_epoch < PRETRAIN_EPOCHS:
if txt_avg_loss < average_loss_validation["txt"]:
average_loss_validation["txt"] = txt_avg_loss
else:
patience += 1
else:
counter = 0
if txt_avg_loss > average_loss_validation["txt"]:
counter += 1
if txt_avg_loss > average_loss_validation["encoder_only"]:
counter += 1
if txt_avg_loss > average_loss_validation["decoder_only"]:
counter += 1
if counter > 1:
patience += 1
txt_min_train_losses = [row[0] for row in text_batch_losses]
txt_avg_train_losses = [row[1] for row in text_batch_losses]
txt_max_train_losses = [row[2] for row in text_batch_losses]
txt_min_loss = min(txt_min_train_losses)
txt_avg_min_loss = sum(txt_min_train_losses) / len(txt_min_train_losses)
txt_max_loss = max(txt_max_train_losses)
txt_avg_max_loss = sum(txt_max_train_losses) / len(txt_max_train_losses)
txt_avg_loss = sum(txt_avg_train_losses) / len(txt_avg_train_losses)
enc_avg_train_loss = float("inf")
dec_min_loss = float("inf")
dec_avg_min_loss = float("inf")
dec_max_loss = float("inf")
dec_avg_max_loss = float("inf")
dec_avg_loss = float("inf")
if current_epoch >= PRETRAIN_EPOCHS:
enc_avg_train_loss = sum(encoder_batch_losses) / len(encoder_batch_losses)
dec_min_train_losses = [row[0] for row in decoder_batch_losses]
dec_avg_train_losses = [row[1] for row in decoder_batch_losses]
dec_max_train_losses = [row[2] for row in decoder_batch_losses]
dec_min_loss = min(dec_min_train_losses)
dec_avg_min_loss = sum(dec_min_train_losses) / len(dec_min_train_losses)
dec_max_loss = max(dec_max_train_losses)
dec_avg_max_loss = sum(dec_max_train_losses) / len(dec_max_train_losses)
dec_avg_loss = sum(dec_avg_train_losses) / len(dec_avg_train_losses)
SEPARATOR = "================================================================================================================"
DEBUG_TEXT = "".join(
[
f"{SEPARATOR}\n",
f"EPOCH {current_epoch}\n",
f"{SEPARATOR}\n",
f"Train Losses:\n",
f"\tMin Losses:\n",
f"\t\tmin_txt: {txt_min_loss} - avg_txt: {txt_avg_min_loss}\n",
f"\t\tmin_dec: {dec_min_loss} - avg_dec: {dec_avg_min_loss}\n",
f"\tMax Losses:\n",
f"\t\tmax_txt: {txt_max_loss} - avg_txt: {txt_avg_max_loss}\n",
f"\t\tmax_dec: {dec_min_loss} - avg_dec: {dec_avg_max_loss}\n",
f"\tAvg Losses:\n",
f"\t\tavg_txt: {txt_avg_loss} - avg_enc: {enc_avg_loss} - avg_dec: {dec_avg_loss}\n",
f"{SEPARATOR}\n",
f"Validation Losses:\n",
f"\ttxt_loss: {txt_avg_loss} - masking_loss: {enc_avg_loss} - prediction: {dec_avg_loss}\n",
f"{SEPARATOR}\n",
]
)
print(DEBUG_TEXT)
# Warn about patience
if patience == PATIENCE:
print("Model is likely overfitting, so let's stop here")
# SAVE MODEL
if current_epoch % CHECKPOINT_STEPS == 0 or patience == PATIENCE:
print(f"Saving model at {CHECKPOINT_PATH.as_posix()}")
torch.save(NANOSOCRATES.state_dict(), CHECKPOINT_PATH)

View File

@@ -1,177 +0,0 @@
import random
import time
import torch
import pandas as pd
from pathlib import Path
import Project_Model.Libs.Embedder as Embedder
import Project_Model.Libs.BPE as BPE
import Project_Model.Libs.Transformer as Transformer
import Project_Model.Libs.TorchShims as torch_shims
# set a fixed seed
torch.manual_seed(0)
random.seed(0)
DEVICE = torch_shims.get_default_device()
torch.set_default_device(DEVICE)
# set a default device
# BPE Init
VOCABULARY_PATH = Path("Assets/Model/toy_10/toy_dictionary.json")
SPECIAL_VOC = BPE.default_special_tokens()
VOCABULARY = BPE.load_nanos_vocabulary(VOCABULARY_PATH)
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_VOC)
# Constants
TOKEN_SPACE_SIZE = TOKENANO.vocabulary_size + 1
EMBEDDED_SIZE = 256
FEED_FORWARD_MULTIPLIER = 4
ATTENTION_HEADS = 8
SENTENCE_LENGTH = 256
NUMBER_OF_BLOCKS = 4
MAX_EPOCHS = int(1e3)
PAD_TOKEN = TOKENANO.encode("<PAD>")[0]
END_TOKEN = TOKENANO.encode("<END>")[0]
# Load CSV
TOY_DATASET_PATH = Path("Assets/Dataset/1-hop/toy/rdf_text.csv")
TOY_DATASET = pd.read_csv(TOY_DATASET_PATH)
TOY_BATCH_INPUT_LIST: list[list[int]] = []
TOY_BATCH_PADDING_LIST: list[list[bool]] = []
TOY_BATCH_TARGET_LIST: list[list[int]] = []
TOY_BATCH_DECODER_DEFAULT: list[list[int]] = []
for index, row in TOY_DATASET.iterrows():
RDFs: str = row["RDFs"]
Abstract: str = row["Abstract"]
input_tokens = TOKENANO.encode(RDFs)
output_tokens = TOKENANO.encode(Abstract)[1:]
decoder_default_tokens = TOKENANO.encode("<SOS>")
input_tokens, padding = Transformer.normalize_sequence(
input_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN
)
output_tokens, _ = Transformer.normalize_sequence(
output_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN
)
decoder_default_tokens, _ = Transformer.normalize_sequence(
decoder_default_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN, False
)
TOY_BATCH_INPUT_LIST.append(input_tokens)
TOY_BATCH_PADDING_LIST.append(padding)
TOY_BATCH_TARGET_LIST.append(output_tokens)
TOY_BATCH_DECODER_DEFAULT.append(decoder_default_tokens)
output_tokens = TOKENANO.encode(RDFs)
input_tokens = TOKENANO.encode(Abstract)[1:]
decoder_default_tokens = TOKENANO.encode("<SOS>")
input_tokens, padding = Transformer.normalize_sequence(
input_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN
)
output_tokens, _ = Transformer.normalize_sequence(
output_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN
)
decoder_default_tokens, _ = Transformer.normalize_sequence(
decoder_default_tokens, SENTENCE_LENGTH, PAD_TOKEN, END_TOKEN, False
)
TOY_BATCH_INPUT_LIST.append(input_tokens)
TOY_BATCH_PADDING_LIST.append(padding)
TOY_BATCH_TARGET_LIST.append(output_tokens)
TOY_BATCH_DECODER_DEFAULT.append(decoder_default_tokens)
# Training loop
LOSS_HISTORY = []
NANOSOCRATES = Transformer.TrainingModel(
TOKEN_SPACE_SIZE,
EMBEDDED_SIZE,
FEED_FORWARD_MULTIPLIER,
ATTENTION_HEADS,
NUMBER_OF_BLOCKS,
)
cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=PAD_TOKEN)
optimizer = torch.optim.AdamW(NANOSOCRATES.parameters())
scheduler = Transformer.WarmupLR(optimizer, 4000, EMBEDDED_SIZE)
last_loss = 0
current_epoch = 0
while current_epoch < MAX_EPOCHS:
optimizer.zero_grad()
encoder_list = torch.tensor(TOY_BATCH_INPUT_LIST[:])
decoder_list = torch.tensor(TOY_BATCH_DECODER_DEFAULT[:])
src_padding = torch.tensor(TOY_BATCH_PADDING_LIST[:], dtype=torch.bool)
# Transform target into logits
target_logits = torch.tensor(TOY_BATCH_TARGET_LIST[:])
last_loss = 0
last_prediction: torch.Tensor
LOSS_HISTORY = []
start = time.time_ns()
for i in range(0, SENTENCE_LENGTH):
optimizer.zero_grad()
tgt_padding = decoder_list.eq(PAD_TOKEN)
logits: torch.Tensor = NANOSOCRATES(
(encoder_list, src_padding, decoder_list, tgt_padding)
)
prob = torch.softmax(logits, 2)
most_probable_tokens = torch.argmax(prob, 2)
last_prediction = most_probable_tokens
logits = logits[:, i, :]
# logits = logits.permute(0, 2, 1)
loss: torch.Tensor = cross_entropy(logits, target_logits[:, i])
LOSS_HISTORY.append(loss.item())
# loss : torch.Tensor = cross_entropy(logits, target_logits[:, 0:i])
# loss : torch.Tensor = cross_entropy(logits, target_logits)
last_loss = loss
loss.backward()
optimizer.step()
scheduler.step()
if i < SENTENCE_LENGTH - 1:
decoder_list[:, i + 1] = target_logits[:, i]
current_epoch += 1
end = time.time_ns()
if current_epoch % 1 == 0:
MIN_LOSS = min(LOSS_HISTORY)
MAX_LOSS = max(LOSS_HISTORY)
AVERAGE_LOSS = sum(LOSS_HISTORY)/len(LOSS_HISTORY)
print(f"EPOCH {current_epoch}\n\tTime: {(end-start)/1E9}s\n\tLoss: {last_loss}")
print(f"\tMin Loss: {MIN_LOSS}\tAvg Loss: {AVERAGE_LOSS}\tMax Loss: {MAX_LOSS}\n")
# for encoded_sentence, expected_sentence in zip(
# Transformer.tensor2token(last_prediction[:, :], END_TOKEN), # type: ignore
# Transformer.tensor2token(target_logits[:, :], END_TOKEN),
# ):
# decoded_sentence = TOKENANO.decode(encoded_sentence)
# decoded_target = TOKENANO.decode(expected_sentence)
# print(
# f"\tACTUAL:\n\t\t{decoded_sentence}\n\tEXPECTED:\n\t\t{decoded_target}\n"
# )

View File

@@ -189,7 +189,7 @@ class NanoSocratesBPE(Encoder):
token_stack.appendleft(right_token)
token_stack.appendleft(left_token)
return UTF_8_STRING_ARR.decode("utf-8", errors="ignore")
return UTF_8_STRING_ARR.decode("utf-8")
def __token_decode(self, token_id: int) -> tuple[int, int]:

View File

@@ -31,7 +31,7 @@ class TokeNanoCore:
def vocabulary_size(self):
BPE_VOC_SIZE = self.__bpe_encoder.vocabulary_size
SPECIAL_VOC_SIZE = self.__special_encoder.vocabulary_size
return BPE_VOC_SIZE + SPECIAL_VOC_SIZE + 1
return BPE_VOC_SIZE + SPECIAL_VOC_SIZE
def encode(self, corpus: str) -> list[int]:
output: list[int] = []

View File

@@ -0,0 +1,11 @@
from ....Libs.Embedder.Classes.NanoSocratesEmbedder import NanoSocratesEmbedder
import torch
class BatchEmbedder(torch.nn.Module):
def __init__(self, vocabulary_size: int, embedding_size: int) -> None:
super().__init__()
self.__embedder = NanoSocratesEmbedder(vocabulary_size,embedding_size)
def forward(self, )

View File

@@ -1,107 +1,50 @@
import random
import sys
from typing import Any, Generator
from typing import Generator
import pandas as pd
from pathlib import Path
from ..Enums import TaskType
import Project_Model.Libs.BPE as BPE
# from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
from Project_Model.Libs.Transformer import (
SpannedMasker,
truncate_rdf_list,
normalize_sequence,
)
from Project_Model.Libs.BPE import SpecialToken
from Scripts.Libs.CleaningPipeline.special_token import SpecialToken
from Project_Model.Libs.Transformer.Classes.SpannedMasker import SpannedMasker
from TokenCompletation import TokenCompletationTransformer
from Project_Model.Libs.BPE.Enums.SpecialToken import SpecialToken
class Batcher:
def __init__(
self,
dataset_path: Path,
max_length: int,
tokenizer: BPE.TokeNanoCore,
masker: SpannedMasker,
seed: int = 0,
debug = False
) -> None:
def __init__(self, dataset_path: str, batch_size:int, tokenizer: BPE.TokeNanoCore, masker: SpannedMasker) -> None:
# ABSTRACT, TRIPLE
# tasks:
# rdf2text: X: TRIPLE, Y: ABSTRACT
# text2rdf: X: ABSTRACT, X:TRIPLE
# masking ( call masker): X: incomplete_triple Y: complete_triple (as exam)
# completation: X: TRIPLE SUBSET, Y: related TRIPLE SUBSET
# it will truncate
# it will instantiate spanmaskter and truncator
self._dataset_path = dataset_path
self._batch_size = batch_size
self._tokenizer = tokenizer
self._masker = masker
self.__max_length = max_length
self._seed = seed
# self._token_completation = TokenCompletationTransformer(sotl,eos)
self._completation_task_token_truncator = truncate_rdf_list
self.__debug = debug
def batch(self, batch_size) -> Generator[
tuple[
list[list[int]],
list[list[int]],
list[list[int]],
list[list[int]],
TaskType
],
Any,
Any,
]:
"""
Yields: X,Y,padding_X
"""
RNG = random.Random(self._seed)
self._masker.reseed(self._seed)
sotl = self._tokenizer.encode(SpecialToken.START_TRIPLE_LIST.value)
eos = self._tokenizer.encode(SpecialToken.END_OF_SEQUENCE.value)
self._token_completation = TokenCompletationTransformer(sotl,eos)
for batch in pd.read_csv(self._dataset_path, chunksize=batch_size):
def get_batch(self)-> Generator[pd.DataFrame]:
for batch in pd.read_csv(self._dataset_path, chunksize= int(self._batch_size/4)): #now we support 3 task
tokenized_batch = pd.DataFrame()
# encode
tokenized_batch[["Abstract", "RDFs"]] = batch[["Abstract", "RDFs"]].map(
lambda t: self._tokenizer.encode(t)
tokenized_batch[["Abstract","RDFs"]] = (
batch[["Abstract","RDFs"]]
.map(lambda t: self._tokenizer.encode(t))
)
X, Y, padding_X, padding_Y = self.__rdf2txt_transformation(tokenized_batch)
yield X, Y, padding_X, padding_Y, TaskType.RDF2TXT
(
X,
Y,
padding_X,
padding_Y,
) = self.__txt2rdf_transformation(tokenized_batch)
yield X, Y, padding_X, padding_Y, TaskType.TEXT2RDF
(
X,
Y,
padding_X,
padding_Y,
) = self.__masking_trasformation(tokenized_batch)
yield X, Y, padding_X, padding_Y, TaskType.MASKING
(
X,
Y,
padding_X,
padding_Y,
) = self.__token_completation_task(
tokenized_batch, RNG.randint(0, sys.maxsize)
)
yield X, Y, padding_X, padding_Y, TaskType.COMPLETATION
rdf2txt_batch = self.__rdf2txt_transformation(tokenized_batch)
txt2rdf_batch = self.__txt2rdf_transformation(tokenized_batch)
mask_batch = self.__masking_trasformation(tokenized_batch)
completation_batch = self.__token_completation_task(tokenized_batch)
output = pd.concat([rdf2txt_batch,txt2rdf_batch,mask_batch,completation_batch],ignore_index=True)
output = output.sample(frac=1).reset_index(drop=True)
yield output
# output = pd.concat([rdf2txt_batch,txt2rdf_batch,completation_batch],ignore_index=True)
# output = output.sample(frac=1).reset_index(drop=True)
# self.decode_debug(output)
# yield output
def __random_subset_rdfs(self, batch: pd.DataFrame, seed = 0):
# WIP
@@ -110,125 +53,42 @@ class Batcher:
def to_list(x):
return x.split(SpecialToken.START_TRIPLE.value)[1:]
batch["RDFs"] = batch["RDFs"].map(to_list)
def decode_debug(self, batch: pd.DataFrame):
decoded = pd.DataFrame()
decoded[["X", "Y"]] = batch[["X", "Y"]].map(lambda t: self._tokenizer.decode(t))
print(decoded)
def __normalization(
self, X: list[list[int]], Y: list[list[int]]
) -> tuple[list[list[int]], list[list[int]], list[list[int]], list[list[int]]]:
pad_token = self._tokenizer.encode(SpecialToken.PAD.value)[0]
end_token = self._tokenizer.encode(SpecialToken.END_OF_SEQUENCE.value)[0]
out_X = []
padding_X = []
out_Y = []
padding_Y = []
for x in X:
out_x, padding_x = normalize_sequence(
x, self.__max_length, pad_token, end_token, True
batch["RDFs"] = batch["RDFs"].map(
to_list
)
out_X.append(out_x)
padding_X.append(padding_x)
for y in Y:
out_y, padding_y = normalize_sequence(
y, self.__max_length, pad_token, end_token, True
)
out_Y.append(out_y)
padding_Y.append(padding_y)
return out_X, out_Y, padding_X, padding_Y
def __rdf2txt_transformation(self, batch: pd.DataFrame):
X: list[list[int]]
task_token = self._tokenizer.encode(SpecialToken.RDF_TO_TEXT.value)
out = batch.rename(columns={"RDFs": "X", "Abstract": "Y"})[["X", "Y"]]
out["X"] = [task_token + x for x in out["X"]]
return self.__normalization(out["X"].to_list(), out["Y"].to_list())
batch = batch.rename(columns={"RDFs": "X", "Abstract": "Y"})
return batch[["X", "Y"]]
def __txt2rdf_transformation(self, batch: pd.DataFrame):
task_token = self._tokenizer.encode(SpecialToken.TEXT_TO_RDF.value)
out = batch.rename(columns={"Abstract": "X", "RDFs": "Y"})[["X", "Y"]]
out["X"] = [task_token + x for x in out["X"]]
return self.__normalization(out["X"].to_list(), out["Y"].to_list())
batch = batch.rename(columns={ "Abstract": "X","RDFs": "Y"})
return batch[["X", "Y"]]
def __masking_trasformation(self, batch: pd.DataFrame):
X = []
Y = []
for rdf in batch["RDFs"]:
x, y = self._masker.mask_sequence(rdf[:self.__max_length])
X.append(x)
Y.append(y)
return self.__normalization(X, Y)
# mask_sequence: List[int] -> Tuple[List[int], List[int]]
xy_tuples = batch["RDFs"].apply(self._masker.mask_sequence) # Series of (X, Y)
def __token_completation_task(self, batch: pd.DataFrame, minibatch_seed: int):
continue_triple_token = self._tokenizer.encode(SpecialToken.CONTINUE_RDF.value)[
0
]
eot = self._tokenizer.encode(SpecialToken.END_TRIPLE.value)[0]
X = []
Y = []
for rdf in batch["RDFs"]:
# here first truncate to max_lenght
rdf = rdf[: self.__max_length] # truncator that uses "eot" so no problem
x, y = self._completation_task_token_truncator(
rdf, 0.5, continue_triple_token, eot, minibatch_seed
)
X.append(x)
Y.append(y)
return self.__token_cmpletation_task_special_normalization(X, Y)
output = batch.copy()
# Expand into two columns preserving the original index
output[["X", "Y"]] = pd.DataFrame(xy_tuples.tolist(), index=batch.index)
return output[["X", "Y"]]
def __token_cmpletation_task_special_normalization(self, X: list[list[int]], Y: list[list[int]]
) -> tuple[list[list[int]], list[list[int]], list[list[int]], list[list[int]]]:
def continue_rdf_padding(sequence: list[int], pad_token: int):
for i, x in enumerate(sequence):
if x == pad_token:
i = i+1 # continueRDF will be excluded by the mask
# fill the tail with True and stop
return [False] * i + [True] * (len(sequence) - i)
return [False] * len(sequence) # no pad token found
def __token_completation_task(self, batch: pd.DataFrame):
xy_tuples = batch["RDFs"].apply(self._token_completation.get_completation_tuple)
output = batch.copy()
output[["X", "Y"]] = pd.DataFrame(xy_tuples.tolist(), index=batch.index)
return output[["X", "Y"]]
pad_token = self._tokenizer.encode(SpecialToken.PAD.value)[0]
end_token = self._tokenizer.encode(SpecialToken.END_OF_SEQUENCE.value)[0]
continue_rdf = self._tokenizer.encode(SpecialToken.CONTINUE_RDF.value)[0]
out_X = []
padding_X = []
out_Y = []
padding_Y = []
for x in X:
out_x, _ = normalize_sequence(
x, self.__max_length, pad_token, end_token, True
)
out_X.append(out_x)
# padding_X.append(padding_x)
special_padding = continue_rdf_padding(out_x,continue_rdf)
padding_X.append(special_padding)
for y in Y:
out_y, padding_y = normalize_sequence(
y, self.__max_length, pad_token, end_token, True
)
out_Y.append(out_y)
# special padding
# special_padding = continue_rdf_padding(out_y,continue_rdf)
# padding_Y.append(special_padding)
padding_Y.append(padding_y)
return out_X, out_Y, padding_X, padding_Y
if __name__ == "__main__":
DATASET_PATH = Path("Assets/Dataset/Tmp/rdf_text.csv")
"""
DATASET_PATH = "Assets/Dataset/Tmp/rdf_text.csv"
VOCABULARY_path = "Assets/Dataset/Tmp/trimmed.json"
from pathlib import Path
VOCABULARY = BPE.load_nanos_vocabulary(Path(VOCABULARY_path))
SPECIAL_LIST = BPE.default_special_tokens()
TOKENANO = BPE.TokeNanoCore(VOCABULARY, SPECIAL_LIST)
@@ -238,6 +98,7 @@ if __name__ == "__main__":
prova = "<ABS>Cactus Flower is a 1969 American screwball comedy film directed by Gene Saks, and starring Walter Matthau, Ingrid Bergman and Goldie Hawn, who won an Academy Award for her performance.The screenplay was adapted by I. A. L. Diamond from the 1965 Broadway play of the same title written by Abe Burrows, which, in turn, is based on the French play Fleur de cactus by Pierre Barillet and Jean-Pierre Gredy. Cactus Flower was the ninth highest-grossing film of 1969."
print(TOKENANO.encode(prova))
batcher = Batcher(DATASET_PATH,256, TOKENANO, MASKER)
for batch in batcher.batch(8):
batcher = Batcher(DATASET_PATH,8,TOKENANO,MASKER)
for batch in batcher.get_batch():
print(batch)
"""

View File

@@ -1,2 +0,0 @@
from .Batcher import Batcher
from .TokenCompletation import TokenCompletationTransformer

View File

@@ -1,5 +0,0 @@
from .TaskType import TaskType
__all__ = [
"TaskType"
]

View File

@@ -1,5 +0,0 @@
from .Classes import *
from .Enums import *
from . import Classes
from . import Enums

View File

@@ -1,70 +0,0 @@
import evaluate
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
class Evaluator():
def __init__(self) -> None:
# txt based evaluator
self.__rouge = evaluate.load("rouge")
self.__rouge_types = ["rougeLsum", "rouge1", "rouge2"] #rougeLsum will work bad because it expect that each sentence are divided with /n
self._bleu = evaluate.load("bleu")
self._meteor = evaluate.load("meteor")
# token based evaluator
self.__acc_m = evaluate.load("accuracy")
self.__prec_m = evaluate.load("precision")
self.__rec_m = evaluate.load("recall")
self.__f1_m = evaluate.load("f1")
def rdf2txt_rouge_evaluation(self, preds: list[str], refs: list[str]):
results = self.__rouge.compute(
predictions=preds, references=refs,
rouge_types=self.__rouge_types,
use_stemmer=True,
use_aggregator=True #F1
)
return {k: float(results[k]) for k in self.__rouge_types}
def rdf2txt_bleu_evaluation(self, preds: list[str], refs: list[str]) -> float:
# sacreBLEU via evaluate; expects references as list-of-lists
# each prediction can be evaluated against a list of references, hence [[ref]]
results = self._bleu.compute(predictions=preds, references=[[r] for r in refs])
return float(results["bleu"]) # (native sacreBLEU scale)
def rdf2txt_meteor_evaluation(self, preds: list[str], refs: list[str]) -> float:
# as bleu
res = self._meteor.compute(predictions=preds, references=[[r] for r in refs])
return float(res["meteor"])
def __my_accuracy(self,preds: list[list[int]], refs: list[list[int]]):
# it is done on token sequence not single token
total = len(preds)
correct = 0
for p, r in zip(preds, refs):
correct += int(p == r)
return correct / total
def __accuracy(self, preds, refs):
return accuracy_score(preds,refs)
def __clean_batch_by_pad(self, preds: list[list[int]], refs: list[list[int]]):
output_preds = []
output_refs = []
#TODO
pad_token: int = 7000 # percolate
for pred, ref in zip(preds,refs):
try:
i = ref.index(pad_token) # first time pad token appears
except ValueError:
i = len(ref)
output_preds.append(pred[:i])
output_refs.append(ref[:i])
return output_preds,output_refs
def __precision_recall(self, preds: list[list[int]], refs: list[list[int]]):
#TODO
p, r, f1, _ = precision_recall_fscore_support(
preds, refs, average="binary", zero_division=0
) #### watch later
return {"precision": float(p), "recall": float(r), "f1": float(f1)}

View File

@@ -0,0 +1,41 @@
import numpy as np
# custom LR from attention is all you need
class Custom_lr():
def __init__(self, d_model: int, warmup_step:int) -> None:
self.__d_model = d_model
self.__warmup_step = warmup_step
self.__epoch = 0
def step(self) -> int:
self.__epoch += 1
return (self.__d_model ** -0.5) * min(self.__epoch ** -0.5,
self.__epoch * (self.__warmup_step ** -1.5))
# OTHER LR
# Learning rate schedules (matching visualization parameters)
def step_lr(epoch, lr):
# StepLR: step_size=20, gamma=0.5 (from visualization)
return lr * 0.5 if epoch % 20 == 0 and epoch > 0 else lr
def exp_lr(epoch, lr):
# ExponentialLR: gamma=0.95 (from visualization)
return lr * 0.95
def cosine_lr(epoch, lr):
# CosineAnnealingLR: lr_min=0.001, lr_max=0.1, max_epochs=100 (from visualization)
lr_min, lr_max = 0.001, 0.1
max_epochs = 100
return lr_min + 0.5 * (lr_max - lr_min) * (1 + np.cos(epoch * np.pi / max_epochs))
def cyclical_lr(epoch, lr):
# CyclicalLR: base_lr=0.001, max_lr=0.1, step_size=20 (from visualization)
base_lr = 0.001
max_lr = 0.1
step_size = 20
cycle = np.floor(1 + epoch / (2 * step_size))
x = np.abs(epoch / step_size - 2 * cycle + 1)
return base_lr + (max_lr - base_lr) * max(0, (1 - x))

View File

@@ -25,8 +25,8 @@ class LogitsCollector:
for row in ids.tolist():
seq: list[int] = []
for tok in row:
# if tok == self.__end_token: # stop on END
# break
if tok == self.__end_token: # stop on END
break
if tok == self.__pad_token: # skip PAD
continue
seq.append(tok)
@@ -36,7 +36,6 @@ class LogitsCollector:
def print_decoded(self) -> None:
for i, seq in enumerate(self.tokens()):
try:
# text = text + self.__end_token
text = self.__tokenizer.decode(seq) # decode tokens to string
except Exception:
text = str(seq) # fallback to ids

View File

@@ -1,20 +0,0 @@
import os
from pathlib import Path
class Log:
def __init__(self, path):
self.path = path
header = ["epoch","avg_txt","avg_enc","avg_dec","txt_loss","masking_loss","prediction_loss"]
if Path(path).is_file():
return
with open(self.path, "w", encoding="utf-8", newline="") as f:
f.write(",".join(header) + "\n")
def write(self, loss: list[float]):
line = ",".join(str(float(x)) for x in loss) + "\n"
with open(self.path, "a", encoding="utf-8", newline="") as f:
f.write(line)
f.flush()
os.fsync(f.fileno()) # extra durability per write # suggested against sudden crashes since it will be done

View File

View File

@@ -1,9 +1,8 @@
from typing import Optional
import torch
import torch.nn as nn
from .FeedForwardNetwork import FeedForwardNetwork
from .TorchMultiHeadAttention import TorchMultiHeadAttention as MultiHeadAttention
from ..Utils.attention_mask import get_causal_attention_mask, get_prefix_causal_mask_from_padding_mask
from ..Utils.attention_mask import get_causal_attention_mask
# B, L(T), E_D
@@ -16,10 +15,8 @@ class Decoder(nn.Module):
feed_forward_hidden_layer_dimension: int,
number_of_attention_heads: int,
) -> None:
self.__attention_heads = number_of_attention_heads
super().__init__()
self.__masked_attention = MultiHeadAttention(
embedding_dimension, number_of_attention_heads, dropout=0.1
)
@@ -45,52 +42,43 @@ class Decoder(nn.Module):
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
Optional[bool]
torch.Tensor
]
): # -> list[torch.Tensor]: # k_x = v_x . While x_q = x
# WARNING: args is needed to have sequential
if len(args) < 6:
args = args + (False)
x, k_x, v_x, src_padding_mask, tgt_padding_mask, decoder_only = args
x, k_x, v_x, padding_mask,encoder_padding_mask = args
# build of attention mask
# TODO: create a prefix causal mask if needed
if decoder_only:
attention_mask = get_prefix_causal_mask_from_padding_mask(x.size(1),src_padding_mask,self.__attention_heads) # the correct is tgt however ...
else:
attention_mask = get_causal_attention_mask(x.size(1))
# 1) Masked Attention
MASKED_ATTENTION = self.__masked_attention(
x, x, x, key_padding_mask=tgt_padding_mask, attention_mask=attention_mask
x, x, x, key_padding_mask=padding_mask, attention_mask=attention_mask
)
# 2) Dropout
DROPPED_MASKED_ATTENTION = self.__dropout(MASKED_ATTENTION)
del MASKED_ATTENTION
# DROPPED_MASKED_ATTENTION = self.__dropout(MASKED_ATTENTION)
# del MASKED_ATTENTION
# 3) Residual Connection
x = x + DROPPED_MASKED_ATTENTION
del DROPPED_MASKED_ATTENTION
x = x + MASKED_ATTENTION
del MASKED_ATTENTION
# 4) Layer Normalization
x = self.__layer_norm_1(x)
if not decoder_only:
# 5) Encoderdecoder (cross) attention
CROSS_ATTENTION = self.__cross_attention(
x, k_x, v_x, key_padding_mask=src_padding_mask
x, k_x, v_x, key_padding_mask=encoder_padding_mask
)
# 6) Dropout
DROPPED_CROSS_ATTENTION = self.__dropout(CROSS_ATTENTION)
del CROSS_ATTENTION
# DROPPED_CROSS_ATTENTION = self.__dropout(CROSS_ATTENTION)
# del CROSS_ATTENTION
# 7) Residual Connection
x = x + DROPPED_CROSS_ATTENTION
del DROPPED_CROSS_ATTENTION
x = x + CROSS_ATTENTION
del CROSS_ATTENTION
# 8) Layer Normalization
x = self.__layer_norm_2(x)
@@ -99,17 +87,17 @@ class Decoder(nn.Module):
FEED_FORWARD = self.__feed_forward_network(x)
# 10) Dropout
DROPPED_FEED_FORWARD = self.__dropout(FEED_FORWARD)
del FEED_FORWARD
# DROPPED_FEED_FORWARD = self.__dropout(FEED_FORWARD)
# del FEED_FORWARD
# 11) Residual Connection
x = x + DROPPED_FEED_FORWARD
del DROPPED_FEED_FORWARD
x = x + FEED_FORWARD
del FEED_FORWARD
# 12) Layer Normalization
x = self.__layer_norm_3(x)
return (x, k_x, v_x, src_padding_mask, tgt_padding_mask, decoder_only)
return (x, k_x, v_x, padding_mask, encoder_padding_mask)
# use eval to disable dropout ecc

View File

@@ -43,12 +43,12 @@ class Encoder(
ATTENTION = self.__attention(x, x, x, key_padding_mask=padding_mask)
# 2) Dropout
DROPPED_ATTENTION = self.__dropout(ATTENTION)
del ATTENTION
# DROPPED_ATTENTION = self.__dropout(ATTENTION)
# del ATTENTION
# 3) Residual Connection
x = x + DROPPED_ATTENTION
del DROPPED_ATTENTION
x = x + ATTENTION
del ATTENTION
# 4) Layer Normalization
x = self.__layer_norm_1(x)
@@ -57,12 +57,12 @@ class Encoder(
FEED_FORWARD = self.__feed_forward(x)
# 6) Dropout
DROPPED_FEED_FORWARD = self.__dropout(FEED_FORWARD)
del FEED_FORWARD
# DROPPED_FEED_FORWARD = self.__dropout(FEED_FORWARD)
# del FEED_FORWARD
# 7) Residual Connection
x = x + DROPPED_FEED_FORWARD
del DROPPED_FEED_FORWARD
x = x + FEED_FORWARD
del FEED_FORWARD
# 8) Layer Normalization
x = self.__layer_norm_2(x)

View File

@@ -0,0 +1,23 @@
import torch
from NanoSocratesCore import NanoSocratesCore
class NanoSocrates(torch.nn.Module):
def __init__(self,
embedded_size: int,
feed_forward_dim: int,
encoder_layers: int,
decoder_layers:int,
attention_heads: int,
vocab_size: int) -> None:
super().__init__()
self._model = NanoSocratesCore(
embedded_size,
feed_forward_dim,
encoder_layers,
decoder_layers,
attention_heads,
vocab_size)

View File

@@ -16,8 +16,11 @@ class NanoSocratesCore(torch.nn.Module):
num_encoder_layers: int = 2,
num_decoder_layers: int = 2,
num_attention_heads: int = 4,
pad_token: int = 0,
) -> None:
super().__init__()
self.__pad_token = pad_token
feed_forward_dim = embedding_size * feed_forward_multiplier
self.__sentence_length = sentence_length
@@ -43,69 +46,64 @@ class NanoSocratesCore(torch.nn.Module):
self.__input_embeder = NanoSocratesEmbedder(vocab_size, embedding_size)
self.__output_embedder = NanoSocratesEmbedder(vocab_size, embedding_size)
@torch.no_grad() # inference only
def forward(
self,
encoder_input: list[list[int]],
decoder_input: list[list[int]],
encoder_padding_mask: list[list[int]],
decoder_input: list[list[int]], # must start with <SOS> and PAD elsewhere
encoder_padding_mask: list[list[bool]], # True where encoder is PAD
):
if len(encoder_padding_mask) != len(encoder_input):
raise Exception("Mismatch in received_dimensions")
# TODO: check for tensor in input to embedder
# 1) Embed User-Input for encoders
ENCODER_INPUT = self.__input_embeder(encoder_input)
ENCODER_INPUT = self.__input_embeder(encoder_input) # [B,S,E]
# 2) Encode User-Input
ENCODER_OUTPUT, _ = self.__encoder_sequence(ENCODER_INPUT, encoder_padding_mask)
ENCODER_OUTPUT, encoder_padding_mask = self.__encoder_sequence(
(ENCODER_INPUT, encoder_padding_mask) # as tuple
) # [B,S,E], [B,S]
del ENCODER_INPUT
exit_loop = False
decoder_token_list = decoder_input[:]
# 3) Autoregressive Output (greedy)
LOGITS_HISTORY: list[torch.Tensor] = [] # keep per-step distributions
decoder_token_list = [row[:] for row in decoder_input] # copy tokens
decoder_phase = 0
exit_loop = False
LOGITS_HISTORY: list[torch.Tensor] = []
# 3) Autoregressive Output
while not exit_loop:
decoder_phase += 1 # move to next position
# 3.0) Increment Counter
decoder_phase += 1
# 3.1) Build decoder key padding mask from current tokens (True where PAD)
DECODER_KEY_PADDING_MASK: list[list[bool]] = [
[tok == self.__pad_token for tok in row] for row in decoder_token_list
] # [B,T]
# 3.1) Embed Decoder Input
decoder_input = self.__output_embedder(decoder_token_list)
# 3.2) Embed Decoder Input (full sequence; decoder builds causal mask inside)
DECODER_INPUT = self.__output_embedder(decoder_token_list) # [B,T,E]
# 3.2) Decode Decoder Input
# 3.3) Decode (self-attn uses causal mask internally; we provide PAD masks)
DECODER_OUTPUT, _, _, _ = self.__decoder_sequence(
decoder_input, ENCODER_OUTPUT, ENCODER_OUTPUT
)
(DECODER_INPUT, ENCODER_OUTPUT, ENCODER_OUTPUT,
DECODER_KEY_PADDING_MASK, encoder_padding_mask)
) # [B,T,E]
del DECODER_INPUT
# 3.3) Go back to Token space
# TODO: change name
LOGITS = self.__linear(DECODER_OUTPUT)
# 3.4) Project to token space
LOGITS = self.__linear(DECODER_OUTPUT) # [B,T,V]
del DECODER_OUTPUT
# 3.4) Transform in probabilities
# TODO: change name
TOKEN_PROBABILITIES = torch.softmax(LOGITS, dim=-1)
del LOGITS
# 3.5) Probabilities and greedy pick at current step
TOKEN_PROBABILITIES = torch.softmax(LOGITS, dim=-1) # [B,T,V]
LOGITS_HISTORY.append(TOKEN_PROBABILITIES) # store for this step
LOGITS_HISTORY.append(TOKEN_PROBABILITIES)
step_idx = decoder_phase - 1 # 0-based
TOKEN_IDS = TOKEN_PROBABILITIES[:, step_idx, :].argmax(dim=-1).tolist() # [B] -> list[int]
# 3.5) Take most probable tokens
TOKEN_IDS = torch.argmax(TOKEN_PROBABILITIES, -1)
# 3.6) Write prediction into next slot (the slot is PAD)
if step_idx + 1 < self.__sentence_length:
for b, tok in enumerate(TOKEN_IDS):
decoder_token_list[b][step_idx + 1] = tok # feed next position
# TODO: check for dimensions and for efficiency
DECODER_TOKEN_TENSOR = torch.tensor(decoder_token_list)
DECODER_TOKEN_TENSOR[:, decoder_phase] = TOKEN_IDS
decoder_token_list = DECODER_TOKEN_TENSOR.tolist()
del TOKEN_IDS
del DECODER_TOKEN_TENSOR
# 3.6) Check if we generated all tokens
# 3.7) Stop when we filled the sequence
if decoder_phase == self.__sentence_length - 1:
exit_loop = True
return LOGITS_HISTORY
return LOGITS_HISTORY # list of [B,T,V] (per step)

View File

@@ -10,7 +10,7 @@ class SpannedMasker:
max_vocabulary: int,
forbidden_tokens: set[int],
change_token_probability: float = 0.15,
average_span: int = 2,
average_span: int = 1,
seed: int = random.randint(0, sys.maxsize),
) -> None:
@@ -25,11 +25,6 @@ class SpannedMasker:
self.__forbidden_tokens = forbidden_tokens
def reseed(self, seed:int):
self.__rng = random.Random(seed)
def mask_sequence(
self,
token_sequence: list[int],

View File

@@ -1,47 +0,0 @@
from typing import override
import torch
# custom LR from attention is all you need
class WarmupLR(torch.optim.lr_scheduler.LRScheduler):
def __init__(
self,
optimizer: torch.optim.Optimizer,
warmup_steps: int,
embedding_size: int,
warming_multiplier: float = -1.5,
decaying_multiplier: float = -0.5,
multiplicative_factor: float = 1.0,
last_epoch: int = -1,
) -> None:
self.__warmup_steps = warmup_steps
self.__embedding_size = embedding_size
self.__warming_multiplier = warming_multiplier
self.__decaying_multiplier = decaying_multiplier
self.__multiplicative_factor = multiplicative_factor
super().__init__(optimizer, last_epoch)
def __scale_at(self, step: int) -> float:
step = max(step, 1)
return (
self.__multiplicative_factor
* (self.__embedding_size**self.__decaying_multiplier)
* min(
step**self.__decaying_multiplier,
step * (self.__warmup_steps**self.__warming_multiplier),
)
)
@override
def get_lr(self) -> list[float]:
torch.optim.lr_scheduler._warn_get_lr_called_within_step(self)
step = max(self.last_epoch, 1)
scale = self.__scale_at(step)
return [base_lr * scale for base_lr in self.base_lrs]
def _get_closed_form_lr(self):
step = max(self.last_epoch, 1)
scale = self.__scale_at(step)
return [base_lr * scale for base_lr in self.base_lrs]

View File

@@ -5,7 +5,6 @@ from .FeedForwardNetwork import FeedForwardNetwork
from .TorchMultiHeadAttention import TorchMultiHeadAttention
from .SpannedMasker import SpannedMasker
from .DeToken import DeToken
from .WarmupLR import WarmupLR
__all__ = [
"Decoder",
@@ -13,6 +12,5 @@ __all__ = [
"FeedForwardNetwork",
"TorchMultiHeadAttention",
"SpannedMasker",
"DeToken",
"WarmupLR"
"DeToken"
]

View File

@@ -1,33 +0,0 @@
import torch
import Project_Model.Libs.Embedder as Embedder
from ..Classes import DeToken
class NanoSocraDecoder(torch.nn.Module):
def __init__(
self,
decoder_embedder: Embedder.NanoSocratesEmbedder,
decoder_layers: torch.nn.Sequential,
detokener: DeToken
) -> None:
super().__init__()
self.__decoder_embedder = decoder_embedder
self.__decoder = decoder_layers
self.__detokener = detokener
def forward(self, args: tuple[torch.Tensor,torch.Tensor, torch.Tensor]):
decoder_embedder_input, prefix_mask, tgt_padding = args
decoder_tensor = self.__decoder_embedder(decoder_embedder_input)
decoder_output, _, _, _, _, _ = self.__decoder(
(decoder_tensor, decoder_tensor, decoder_tensor, prefix_mask, tgt_padding, True)
)
logits: torch.Tensor = self.__detokener(decoder_output)
return logits

View File

@@ -1,29 +0,0 @@
import torch
import Project_Model.Libs.Embedder as Embedder
from ..Classes import DeToken
class NanoSocratEncoder(torch.nn.Module):
def __init__(
self,
encoder_embedder: Embedder.NanoSocratesEmbedder,
encoder_layers: torch.nn.Sequential,
detokener: DeToken
) -> None:
super().__init__()
self.__encoder_embedder = encoder_embedder
self.__encoder = encoder_layers
self.__detokener = detokener
def forward(self, args: tuple[torch.Tensor, torch.Tensor]):
encoder_embedder_input, src_padding = args
encoder_tensor = self.__encoder_embedder(encoder_embedder_input)
encoder_output, _ = self.__encoder((encoder_tensor, src_padding))
logits: torch.Tensor = self.__detokener(encoder_output)
return logits

View File

@@ -1,219 +0,0 @@
import torch
import Project_Model.Libs.Embedder as Embedder
from ..Classes import Encoder, Decoder, DeToken
from ..Utils import get_decoder_input
from Project_Model.Libs.Batch import TaskType
class NanoSocratesCore(torch.nn.Module):
def __init__(
self,
vocabulary_size: int,
sentence_max_length: int,
sos: int,
pad: int,
eos: int,
continuerdf: int,
latent_space: int = 256,
feed_forward_multiplier: int = 4,
attention_heads: int = 4,
layer_number: int = 2,
) -> None:
super().__init__()
self.__sos = sos
self.__pad = pad
self.__eos = eos
self.__continuerdf = continuerdf
self.__sentence_len = sentence_max_length
feed_forward_latent_space = latent_space * feed_forward_multiplier
self.__encoder_embedder = Embedder.NanoSocratesEmbedder(
vocabulary_size, latent_space
)
self.__decoder_embedder = Embedder.NanoSocratesEmbedder(
vocabulary_size, latent_space
)
TMP_ENCODERS = [
Encoder(latent_space, feed_forward_latent_space, attention_heads)
] * layer_number
TMP_DECODERS = [
Decoder(latent_space, feed_forward_latent_space, attention_heads)
] * layer_number
self.__encoder = torch.nn.Sequential(*TMP_ENCODERS)
self.__decoder = torch.nn.Sequential(*TMP_DECODERS)
self.__detokener = DeToken(latent_space, vocabulary_size)
self.__encoder_detokener = DeToken(latent_space, vocabulary_size)
def forward(self, args: tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]):
encoder_embedder_input, src_padding, decoder_embedder_input, tgt_padding = args
encoder_tensor = self.__encoder_embedder(encoder_embedder_input)
decoder_tensor = self.__decoder_embedder(decoder_embedder_input)
encoder_output, _ = self.__encoder((encoder_tensor, src_padding))
decoder_output, _, _, _, _, _ = self.__decoder(
(decoder_tensor, encoder_output, encoder_output, src_padding, tgt_padding, False)
)
logits: torch.Tensor = self.__detokener(decoder_output)
return logits
def inference(self, input: tuple[torch.Tensor, torch.Tensor], task_type: TaskType) -> torch.Tensor:
if task_type == TaskType.MASKING:
return self.__masking(input)
if task_type == TaskType.COMPLETATION:
return self.__continue_rdf(input)
return self.__text_generation(input)
def __text_generation(self, args: tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
x, padding = args
encoder_tensor = self.__encoder_embedder(x)
BATCH: int
if len(x.shape) > 2:
BATCH, SEQ_LEN, _ = x.shape
else:
_, SEQ_LEN = x.shape
BATCH = 1
encoder_output, _ = self.__encoder((encoder_tensor, padding))
decoder_in = get_decoder_input(BATCH, self.__sos, self.__pad, SEQ_LEN)
decoder_in_pad_mask = decoder_in.eq(self.__pad)
continue_generating = True
token_idx = 0
while continue_generating:
decoder_in_x = self.__decoder_embedder(decoder_in)
decoder_output, _, _, _, _, _ = self.__decoder(
(decoder_in_x, encoder_output, encoder_output, padding, decoder_in_pad_mask, False)
)
logits: torch.Tensor = self.__detokener(decoder_output)
logits = torch.softmax(logits, 2)
tokens = torch.argmax(logits, 2)
if token_idx < self.__sentence_len - 1:
decoder_in[:,token_idx + 1] = tokens[:,token_idx]
decoder_in_pad_mask = decoder_in.eq(self.__pad)
if token_idx == self.__sentence_len - 1:
continue_generating = False
continue
if tokens.shape[0] == 1 and tokens[0,token_idx] == self.__eos:
continue_generating = False
continue
token_idx += 1
return decoder_in
def __masking(self, args: tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
x, padding = args
encoder_tensor = self.__encoder_embedder(x)
x, _ = self.__encoder((encoder_tensor, padding))
logits: torch.Tensor = self.__encoder_detokener(x)
del x
logits = torch.softmax(logits, 2)
tokens = torch.argmax(logits, 2)
return tokens
def __continue_rdf(self, args: tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
decoder_in, _ = args
decoder_in_prefix_mask = decoder_in.eq(self.__pad)
decoder_in_pad_mask = decoder_in.eq(self.__pad)
continue_generating = True
token_idx: int= int((decoder_in[0] == self.__continuerdf).nonzero()[0].item()) + 1
while continue_generating:
decoder_x = self.__decoder_embedder(decoder_in)
decoder_output, _, _, _, _, _ = self.__decoder(
(decoder_x, decoder_in, decoder_in, decoder_in_prefix_mask, decoder_in_pad_mask, True)
)
logits: torch.Tensor = self.__detokener(decoder_output)
logits = torch.softmax(logits, 2)
tokens = torch.argmax(logits, 2)
if token_idx < self.__sentence_len - 1:
decoder_in[:,token_idx + 1] = tokens[:,token_idx]
decoder_in_pad_mask = decoder_in.eq(self.__pad)
if token_idx == self.__sentence_len - 1:
continue_generating = False
continue
if tokens.shape[0] == 1 and tokens[0,token_idx] == self.__eos:
continue_generating = False
continue
token_idx += 1
return decoder_in
def take_pieces(self):
return (
(self.__encoder_embedder, self.__encoder, self.__encoder_detokener),
(self.__decoder_embedder, self.__decoder, self.__detokener)
)
def load_pieces(
self,
encoder_embedder: Embedder.NanoSocratesEmbedder,
decoder_embedder: Embedder.NanoSocratesEmbedder,
encoder: torch.nn.Sequential,
decoder: torch.nn.Sequential,
encoder_detokener: DeToken,
decoder_detokener: DeToken
):
self.__encoder_embedder = encoder_embedder
self.__decoder_embedder = decoder_embedder
self.__encoder = encoder
self.__decoder = decoder
self.__encoder_detokener = encoder_detokener
self.__detokener = decoder_detokener

View File

@@ -24,40 +24,49 @@ class TrainingModel(torch.nn.Module):
vocabulary_size, latent_space
)
TMP_ENCODERS = [
# do NOT share layer weights
enc_layers = [
Encoder(latent_space, feed_forward_latent_space, attention_heads)
] * layer_number
TMP_DECODERS = [
for _ in range(layer_number)
]
dec_layers = [
Decoder(latent_space, feed_forward_latent_space, attention_heads)
] * layer_number
for _ in range(layer_number)
]
self.__encoder = torch.nn.Sequential(*TMP_ENCODERS)
self.__decoder = torch.nn.Sequential(*TMP_DECODERS)
self.__encoder = torch.nn.Sequential(*enc_layers)
self.__decoder = torch.nn.Sequential(*dec_layers)
self.__detokener = DeToken(latent_space, vocabulary_size)
self.__encoder_detokener = DeToken(latent_space, vocabulary_size)
def forward(self, args: tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]):
def forward(
self,
args: tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]
):
# returns logits for the LAST decoder position only -> [B, V]
(
encoder_embedder_input, # [B,S] encoder tokens
encoder_padding_mask, # [B,S] True where encoder is PAD
decoder_embedder_prefix, # [B,Tp] decoder prefix (e.g., <SOS> + tokens so far)
decoder_padding_mask, # [B,Tp] True where decoder prefix has PAD
) = args
encoder_embedder_input, src_padding, decoder_embedder_input, tgt_padding = args
# 1) embeddings
encoder_tensor = self.__encoder_embedder(encoder_embedder_input) # [B,S,E]
decoder_tensor = self.__decoder_embedder(decoder_embedder_prefix) # [B,Tp,E]
encoder_tensor = self.__encoder_embedder(encoder_embedder_input)
decoder_tensor = self.__decoder_embedder(decoder_embedder_input)
# 2) encode
encoder_output, _ = self.__encoder((encoder_tensor, encoder_padding_mask)) # [B,S,E], [B,S]
encoder_output, _ = self.__encoder((encoder_tensor, src_padding))
# 3) decode (causal mask is built inside the decoder)
decoder_output, _, _, _, _ = self.__decoder(
(decoder_tensor, encoder_output, encoder_output,
decoder_padding_mask, encoder_padding_mask)
) # [B,Tp,E], ...
decoder_output, _, _, _, _, _ = self.__decoder(
(decoder_tensor, encoder_output, encoder_output, src_padding, tgt_padding, False)
)
# 4) project only the last time step
last_hidden = decoder_output[:, -1:, :] # [B,1,E]
step_logits = self.__detokener(last_hidden) # [B,1,V]
step_logits = step_logits[:, -1, :] # [B,V]
logits: torch.Tensor = self.__detokener(decoder_output)
return logits
def take_pieces(self):
return (
(self.__encoder_embedder, self.__encoder, self.__encoder_detokener),
(self.__decoder_embedder, self.__decoder, self.__detokener)
)
return step_logits # logits for one token

View File

@@ -1,11 +1,5 @@
from .TrainingModel import TrainingModel
from .NanoSocratEncoder import NanoSocratEncoder
from .NanoSocraDecoder import NanoSocraDecoder
from .NanoSocrates import NanoSocratesCore
__all__ = [
"TrainingModel",
"NanoSocratEncoder",
"NanoSocraDecoder",
"NanoSocratesCore"
"TrainingModel"
]

View File

@@ -3,9 +3,6 @@ from .task_type import TaskType
from .post_tokenization import truncate_sequence, pad_sequence, normalize_sequence, create_padding_mask
from .inference_masking import inference_masking
from .truncate_rdf_list import truncate_rdf_list
from .decode_out import tensor2token
from .decoder_input import get_decoder_input
__all__ = [
"TaskType",
@@ -16,7 +13,5 @@ __all__ = [
"create_padding_mask",
"normalize_sequence",
"inference_masking",
"truncate_rdf_list",
"tensor2token",
"get_decoder_input"
"truncate_rdf_list"
]

View File

@@ -9,22 +9,3 @@ def get_causal_attention_mask_batched(seq_len: int, batch_size: int ) -> torch.T
base_mask = get_causal_attention_mask(seq_len)
return base_mask.unsqueeze(0).expand(batch_size, -1, -1) # add another dimension at the beginning, big as batch_size
# the result is that z,x,y where x,y are repeated along z
def get_causal_attention_mask_with_prefix(seq_len, prefix):
mask = torch.triu(torch.ones(seq_len, seq_len, dtype=torch.bool), diagonal=1)
mask[:,:prefix] = False
return mask
def get_prefix_causal_mask_from_padding_mask(seq_len:int, prefix_mask, att_heads:int=1):
expanded_padding_mask = prefix_mask.unsqueeze(-1).repeat(1, 1, seq_len) # B,T,T
expanded_padding_mask = expanded_padding_mask.permute(0,2,1) # B,T,T
mask = torch.triu(torch.ones(seq_len, seq_len, dtype=torch.bool), diagonal=1) # T,T
tri_batched = mask.unsqueeze(0) # 1,T,T will broadcast over B
prefix_causal_mask = expanded_padding_mask & tri_batched
prefix_causal_mask = prefix_causal_mask.repeat_interleave(att_heads, dim=0) # B*H,T,T
return prefix_causal_mask
#def get_prefix_causal_mask():
# continue_rdf =

View File

@@ -1,27 +0,0 @@
from typing import Generator
import torch
def tensor2token(tensor: torch.Tensor, end_token: int) -> Generator[list[int]]:
if len(tensor.shape) < 1 or len(tensor.shape) > 2:
raise ValueError("Shape is not correct")
if len(tensor.shape) == 1:
token_list: list[int] = tensor.tolist()
token_list.append(end_token)
yield token_list
return
batch_len: int
batch_len, _ = tensor.shape
for i in range(batch_len):
smaller_tensor = tensor[i, :]
token_list: list[int] = smaller_tensor.tolist()
token_list.append(end_token)
yield token_list

View File

@@ -1,14 +0,0 @@
import torch
from ..Utils import normalize_sequence
# from Project_Model.Libs.Embedder import NanoSocratesEmbedder as Embedder
def get_decoder_input(batch_size, sos_token,pad_token, seq_len):
single_decoder_input, _ = normalize_sequence([sos_token],seq_len,pad_token, end_token=0, add_ending=False)
tensor_decoder_input = torch.tensor(single_decoder_input[:])
# embedded_decoder_intput = embedder(tensor_decoder_input)
batch_decoder_input = tensor_decoder_input.unsqueeze(0).repeat(batch_size, 1)
return batch_decoder_input

View File

@@ -1,19 +1,16 @@
def truncate_sequence(
sequence: list[int], truncate_at: int, end_token: int, add_ending: bool
sequence: list[int], truncate_at: int, end_token: int
) -> list[int]:
if len(sequence) < truncate_at - 1:
if add_ending:
sequence.append(end_token)
return sequence
if len(sequence) < truncate_at:
if add_ending:
sequence[-1] = end_token
return sequence
TRUNCATED_SEQUENCE = sequence[:truncate_at]
if add_ending:
TRUNCATED_SEQUENCE[-1] = end_token
return TRUNCATED_SEQUENCE
@@ -51,9 +48,8 @@ def normalize_sequence(
max_length: int,
pad_token: int,
end_token: int,
add_ending: bool = True
) -> tuple[list[int], list[bool]]:
new_sequence = truncate_sequence(sequence, max_length, end_token, add_ending)
new_sequence = truncate_sequence(sequence, max_length, end_token)
new_sequence = pad_sequence(new_sequence, max_length, pad_token)
PADDING_MASK = create_padding_mask(new_sequence, pad_token)

View File

@@ -1,7 +1,6 @@
from enum import Enum, auto
class TaskType(Enum):
TEXT2RDF = auto()
RDF2TEXT = auto()
MASK = auto()
COMPLETATION = auto()

View File

@@ -27,6 +27,7 @@ def truncate_rdf_list(
END_OF_TRIPLES.append(i + 1)
TRIPLES_TOKENS: list[int] = []
TARGET_TRIPLES: list[int] = []
start_of_triple = 0
exit_loop = False
@@ -55,10 +56,10 @@ def truncate_rdf_list(
EOT = END_OF_TRIPLES.popleft()
TRIPLE = sequence[start_of_triple:EOT]
TRIPLES_TOKENS.extend(TRIPLE)
TARGET_TRIPLES.extend(TRIPLE)
start_of_triple = EOT
return (TRIPLES_TOKENS, TRIPLES_TOKENS)
return (TRIPLES_TOKENS, TARGET_TRIPLES)

View File

@@ -1,9 +1,7 @@
from .Classes import *
from .Enums import *
from .Utils import *
from .Models import *
from . import Classes
from . import Enums
from . import Utils
from . import Models

View File

@@ -1,6 +0,0 @@
from enum import Enum, auto
class ModelType(Enum):
ENCODER_ONLY = auto()
DECODER_ONLY = auto()

View File

@@ -1,14 +0,0 @@
from .model_utils import decompose_nano_socrates, create_standalone_model, train2inference
from .ModelType import ModelType
from .decode_batch import decode_batch
from .metrics import precision, recall, accuracy, f1, meteor, bleu, rouge, average, rdf2txt, txt2rdf, rdf_completion_1, rdf_completion_2, remove_padding, balance_paddings
__all__ = [
"ModelType",
"decompose_nano_socrates",
"create_standalone_model",
"decode_batch",
"train2inference",
"precision", "recall", "accuracy", "f1", "meteor", "bleu", "rouge", "average",
"rdf2txt", "txt2rdf", "rdf_completion_1", "rdf_completion_2", "remove_padding", "balance_paddings"
]

View File

@@ -1,16 +0,0 @@
import torch
import Project_Model.Libs.BPE as BPE
def decode_batch(batch: torch.Tensor, tokenizer: BPE.TokeNanoCore ,uknonw_token: int) -> list[str]:
strings = []
BATCH, _ = batch.shape
for i in range(0, BATCH):
tokens: list[int] = batch.tolist()[i]
tokens = list(map(lambda x: uknonw_token if x > tokenizer.vocabulary_size else x, tokens))
strings.append(tokenizer.decode(tokens))
return strings

View File

@@ -1,100 +0,0 @@
import evaluate as eval
BLEU = eval.load("bleu")
ROUGE = eval.load("rouge")
METEOR = eval.load("meteor")
def precision(ref: list[int], pred: list[int]):
metric = eval.load("precision")
return metric.compute(predictions=pred, references=ref, average="weighted", zero_division=0)
def recall(ref: list[int], pred: list[int]):
metric = eval.load("recall")
return metric.compute(predictions=pred, references=ref, average="weighted", zero_division=0)
def accuracy(ref: list[int], pred: list[int]):
metric = eval.load("accuracy")
return metric.compute(predictions=pred, references=ref)
def meteor(ref: list[str], pred: list[str]):
metric = METEOR
return metric.compute(predictions=pred, references=ref)
def bleu(ref: list[str], pred: list[str]):
metric = BLEU
return metric.compute(predictions=pred, references=ref)
def rouge(ref: list[str], pred: list[str]):
metric = ROUGE
return metric.compute(predictions=pred, references=ref)
def f1(precision: float, recall: float):
divisor = max((precision + recall), 1E-5)
return (2 * recall * precision) / divisor
def average(array: list[float]):
return sum(array) / len(array)
def rdf2txt(ref: list[str], pred: list[str]):
b_m = bleu(ref, pred)
r_m = rouge(ref, pred)
m_m = meteor(ref, pred)
return (b_m, r_m, m_m)
def txt2rdf(ref: list[int], pred: list[int]):
p_m = precision(ref, pred)
r_m = recall(ref, pred)
return (p_m, r_m)
def rdf_completion_1(ref: list[int], pred: list[int]):
a_m = accuracy(ref, pred)
return a_m
def rdf_completion_2(ref: list[int], pred: list[int]):
p_m = precision(ref, pred)
r_m = recall(ref, pred)
return (p_m, r_m)
def remove_padding(seq: list[int], pad_token: int, end_token: int):
clean_seq = list(filter(lambda x: x != pad_token, seq))
if clean_seq[-1] == end_token:
return clean_seq
clean_seq.append(
end_token
)
return clean_seq
def balance_paddings(seq_1: list[int], seq_2: list[int], pad_token: int):
SEQ_1_LEN = len(seq_1)
SEQ_2_LEN = len(seq_2)
if SEQ_1_LEN > SEQ_2_LEN:
PAD = [pad_token] * (SEQ_1_LEN - SEQ_2_LEN)
seq_2.extend(PAD)
if SEQ_2_LEN > SEQ_1_LEN:
seq_2 = seq_2[:SEQ_1_LEN]
return (seq_1, seq_2)

View File

@@ -1,72 +0,0 @@
import torch
from Project_Model.Libs.Embedder import NanoSocratesEmbedder
from Project_Model.Libs.Transformer import TrainingModel,NanoSocratesCore, NanoSocraDecoder, NanoSocratEncoder, DeToken, Encoder, Decoder
from .ModelType import ModelType
def decompose_nano_socrates(
model: TrainingModel | NanoSocratesCore , vocabulary_size: int, embedding_size: int
) -> tuple[TrainingModel | NanoSocratesCore, NanoSocratEncoder, NanoSocraDecoder]:
encoder_pieces, decoder_pieces = model.take_pieces()
encoder_embedder, encoder, encoder_detokener = encoder_pieces
decoder_embedder, decoder, decoder_detokener = decoder_pieces
return (
model,
NanoSocratEncoder(encoder_embedder, encoder, encoder_detokener),
NanoSocraDecoder(decoder_embedder, decoder, decoder_detokener),
)
def train2inference(
train_model: TrainingModel,
inference_model: NanoSocratesCore
) -> NanoSocratesCore:
encoder_pieces, decoder_pieces = train_model.take_pieces()
enc_emb, encoder, enc_det = encoder_pieces
dec_emb, decoder, dec_det = decoder_pieces
inference_model.load_pieces(
enc_emb,
dec_emb,
encoder,
decoder,
enc_det,
dec_det
)
return inference_model
def create_standalone_model(
model_type: ModelType,
vocabulary_size: int,
latent_space: int = 256,
feed_forward_multiplier: int = 4,
attention_heads: int = 4,
layer_number: int = 2,
) -> NanoSocratEncoder | NanoSocraDecoder:
feed_forward_latent_space = latent_space * feed_forward_multiplier
embedder = NanoSocratesEmbedder(vocabulary_size, latent_space)
detokener = DeToken(latent_space, vocabulary_size)
if model_type == ModelType.ENCODER_ONLY:
TMP_ENCODERS = [
Encoder(latent_space, feed_forward_latent_space, attention_heads)
] * layer_number
encoder = torch.nn.Sequential(*TMP_ENCODERS)
return NanoSocratEncoder(embedder, encoder, detokener)
TMP_DECODERS = [
Decoder(latent_space, feed_forward_latent_space, attention_heads)
] * layer_number
decoder = torch.nn.Sequential(*TMP_DECODERS)
return NanoSocraDecoder(embedder, decoder, detokener)

View File

@@ -2,4 +2,3 @@ from . import BPE
from . import Embedder
from . import Transformer
from . import TorchShims
from . import TransformerUtils

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.