1.6 KiB
1.6 KiB
Kallman Decomposition
Some background
X_r = R(K_c): Reachable space is the range of thecontrollable matrixX_{no} = Ker(K_o): Not observable Space is the kernel of theobservability matrixX = X_r \bigoplus X_{nr}: Each possible state is sum of bases ofreachableandnot-reachable states
Full Decomposition
Tip
Follow Example 12 To understand this part
X_1 = X_r \cap X_{nr}:ReachablebutNot-ObservablespaceX_2 =Complement ofX_1to coverX_r: BothReachableandObservableX_3 =Complement ofX_1to coverX_{no}: BothNot-ReachableandNot-ObservableX_4 =Complement of all the others to coverX: BotNot-ReachableandObservable
From here we have these blocks:
\begin{align*}
\hat{A} &= \begin{bmatrix}
\hat{A}_{11} & \hat{A}_{12} & \hat{A}_{13} & \hat{A}_{14} \\
0 & \hat{A}_{22} & 0 & \hat{A}_{24} \\
0 & 0 & \hat{A}_{33} & \hat{A}_{34} \\
0 & 0 & 0 & \hat{A}_{44}
\end{bmatrix}\\
\hat{B} &= \begin{bmatrix}
\hat{B}_{1} \\ \hat{B}_{2} \\ 0 \\ 0
\end{bmatrix}\\
\hat{C} &= \begin{bmatrix}
0 & \hat{C}_{2} & 0 & \hat{C}_{4}
\end{bmatrix}
\end{align*}
Now, the eigenvalues of \hat{A} = \cup_i^4 \hat{A}_{ii} and:
eig(\hat{A}_{11}):ReachableandNot-Observableeig(\hat{A}_{22}):ReachableandNot-Observableeig(\hat{A}_{33}):Not-ReachableandNot-Observableeig(\hat{A}_{44}):Not-ReachableandObservable