Control-Network-Systems/docs/Chapters/12-KALLMAN-DECOMPOSITION.md
Christian Risi 344641b0a4 V0.8.9
2025-01-15 14:49:52 +01:00

49 lines
1.6 KiB
Markdown

# Kallman Decomposition
## Some background
- $X_r = R(K_c)$ : Reachable space is the range of the
`controllable matrix`
- $X_{no} = Ker(K_o)$ : Not observable Space is the kernel
of the `observability matrix`
- $X = X_r \bigoplus X_{nr}$ : Each possible state is sum of
bases of `reachable` and `not-reachable states`
## Full Decomposition
> [!TIP]
> Follow [Example 12](./Examples/EXAMPLE-12.md/#kallman-full-decomposition) To understand this part
- $X_1 = X_r \cap X_{nr}$ : `Reachable` but `Not-Observable`
space
- $X_2 =$ Complement of $X_1$ to cover $X_r$ : Both `Reachable`
and `Observable`
- $X_3 =$ Complement of $X_1$ to cover $X_{no}$ : Both
`Not-Reachable` and `Not-Observable`
- $X_4 =$ Complement of all the others to cover $X$ : Bot
`Not-Reachable` and `Observable`
From here we have these blocks:
$$
\begin{align*}
\hat{A} &= \begin{bmatrix}
\hat{A}_{11} & \hat{A}_{12} & \hat{A}_{13} & \hat{A}_{14} \\
0 & \hat{A}_{22} & 0 & \hat{A}_{24} \\
0 & 0 & \hat{A}_{33} & \hat{A}_{34} \\
0 & 0 & 0 & \hat{A}_{44}
\end{bmatrix}\\
\hat{B} &= \begin{bmatrix}
\hat{B}_{1} \\ \hat{B}_{2} \\ 0 \\ 0
\end{bmatrix}\\
\hat{C} &= \begin{bmatrix}
0 & \hat{C}_{2} & 0 & \hat{C}_{4}
\end{bmatrix}
\end{align*}
$$
Now, the eigenvalues of $\hat{A} = \cup_i^4 \hat{A}_{ii}$ and:
- $eig(\hat{A}_{11})$: `Reachable` and `Not-Observable`
- $eig(\hat{A}_{22})$: `Reachable` and `Not-Observable`
- $eig(\hat{A}_{33})$: `Not-Reachable` and `Not-Observable`
- $eig(\hat{A}_{44})$: `Not-Reachable` and `Observable`