132 lines
2.3 KiB
Markdown
132 lines
2.3 KiB
Markdown
# Example 3
|
|
|
|
## Double Mass Cart
|
|
|
|

|
|
|
|
### Formulas
|
|
|
|
- Resulting forces for cart 1:\
|
|
$
|
|
m_1 \ddot{p}_1 = k_2(p_2 - p_1) + b_2( \dot{p}_2 - \dot{p}_1) -
|
|
k_1 p_1 - b_1 \dot{p}_1
|
|
$
|
|
|
|
- Resulting forces for cart 2:\
|
|
$
|
|
m_2 \ddot{p}_2 = F - k_2(p_2 - p_1) - b_2( \dot{p}_2 - \dot{p}_1)
|
|
$
|
|
|
|
### Reasoning
|
|
We now have 2 different accelerations. The highest order of derivatives is 2 for
|
|
2 variables, hence we need 4 variables in the `state`:
|
|
|
|
$$
|
|
x = \begin{bmatrix}
|
|
x_1 = p_1\\
|
|
x_2 = p_2\\
|
|
x_3 = \dot{p}_1\\
|
|
x_4 = \dot{p}_2
|
|
\end{bmatrix}
|
|
|
|
\dot{x} = \begin{bmatrix}
|
|
\dot{x}_1 = \dot{p}_1 = x_3 \\
|
|
\dot{x}_2 = \dot{p}_2 = x_4\\
|
|
\dot{x}_3 = \ddot{p}_1 =
|
|
\frac{1}{m_1} \left[ k_2(x_2 - x_1) + b_2( x_4 - x_3) -
|
|
k_1 x_1 - b_1 x_3 \right]\\
|
|
\dot{x}_4 = \ddot{p}_2 =
|
|
\frac{1}{m_2} \left[ F - k_2(x_2 - x_1) - b_2( x_4 - x_3) \right]\\
|
|
\end{bmatrix}
|
|
$$
|
|
|
|
Let's write our $S(A, B, C, D)$:
|
|
$$
|
|
A = \begin{bmatrix}
|
|
0 & 0 & 1 & 0 \\
|
|
0 & 0 & 0 & 1 \\
|
|
% 3rd row
|
|
- \frac{k_2 - k_1}{m_1} &
|
|
\frac{k_2}{m_1} &
|
|
-\frac{b_2 + b_1}{m_1} &
|
|
\frac{b_2}{m_1} \\
|
|
% 4th row
|
|
\frac{k_2}{m_12} &
|
|
- \frac{k_2}{m_2} &
|
|
\frac{b_2}{m_2} &
|
|
- \frac{b_2}{m_2} \\
|
|
\end{bmatrix}
|
|
|
|
B = \begin{bmatrix}
|
|
0 \\
|
|
0 \\ 0 \\ 1
|
|
\end{bmatrix}
|
|
|
|
C = \begin{bmatrix}
|
|
1 & 0 & 0 & 0 \\
|
|
0 & 1 & 0 & 0
|
|
\end{bmatrix}
|
|
|
|
D = \begin{bmatrix}
|
|
0
|
|
\end{bmatrix}
|
|
$$
|
|
|
|
|
|
## Suspended Mass
|
|
|
|
|
|
> [!NOTE]
|
|
> For those of you the followed CNS course, refer to professor
|
|
> PDF for this excercise, as it has some unclear initial conditions
|
|
>
|
|
> However, in the formulas section, I'll take straight up his own
|
|
|
|

|
|
|
|
### Formulas
|
|
|
|
- Resulting forces for mass:\
|
|
$
|
|
m \ddot{p} = -k(p - r) -b(\dot{p} - \dot{r})
|
|
$
|
|
|
|
### Reasoning
|
|
|
|
|
|
$$
|
|
x = \begin{bmatrix}
|
|
x_1 = p \\
|
|
x_2 = \dot{x}_1
|
|
\end{bmatrix}
|
|
|
|
\dot{x} = \begin{bmatrix}
|
|
\dot{x}_1 = x_2 \\
|
|
\dot{x}_2 = \frac{1}{m} \left[-k(x_1 - r) -b(x_2 - \dot{r}) \right]
|
|
\end{bmatrix}
|
|
$$
|
|
|
|
<!-- TODO: Correct here looking from book -->
|
|
> [!WARNING]
|
|
> Info here are wrong
|
|
|
|
Let's write our $S(A, B, C, D)$:
|
|
$$
|
|
A = \begin{bmatrix}
|
|
0 & 1\\
|
|
-\frac{k}{m} & - \frac{b}{m}
|
|
\end{bmatrix}
|
|
|
|
B = \begin{bmatrix}
|
|
0 \\
|
|
\frac{k + sb}{m}
|
|
\end{bmatrix}
|
|
|
|
C = \begin{bmatrix}
|
|
1 & 0
|
|
\end{bmatrix}
|
|
|
|
D = \begin{bmatrix}
|
|
0 & 0
|
|
\end{bmatrix}
|
|
$$ |